Extension of Fourier-Based Techniques for Ultrafast Imaging in Ultrasound With Diverging Waves

Miaomiao Zhang, François Varray, Adrien Besson, Rafael E. Carrillo, Member, IEEE, Magalie Viallon, Damien Garcia, Jean-Philippe Thiran, Senior Member, IEEE, Denis Friboulet, Hervé Liebgott, and Olivier Bernard

Abstract—Ultrafast ultrasound imaging has become an intensive area of research thanks to its capability in reaching high frame rates. In this paper, we propose a scheme that allows the extension of the current Fourier-based techniques derived for planar acquisition to the reconstruction of sectorial scan with wide angle using diverging waves. The flexibility of the proposed formulation was assessed through two different Fourier-based techniques. The performance of the derived approaches was evaluated in terms of resolution and contrast from both simulations and in vitro experiments. The comparisons of the current state-of-the-art method with the conventional delay-and-sum technique illustrated the potential of the derived methods for producing competitive results with lower computational complexity.

Index Terms—Diverging waves (DWs), Fourier-based method, ultrafast imaging.

I. INTRODUCTION

Traditional ultrasound imaging is usually performed by scanning a medium using sequential focused or multifocused beams, each firing allowing the reconstruction of one narrow sector of the final image [1], [2]. Assuming that the only limitation to the frame rate is the ultrasound wave propagation, the time needed to construct an image is thus proportional to the number of lines, the image depth, and the speed of sound. Limitations of conventional approach appear when a large number of lines are required or when the dynamics of the phenomena to be imaged is faster than the frame rate currently delivered by the ultrasound systems. 3-D cardiac imaging is a typical example of such a challenge since the number of lines to acquire for one volume becomes very large and the corresponding frame rate substantially decreases, with a typical value around 1 volume per second (vps) for the same image quality as in 2-D or with values between 10 and 40 vps using dedicated strategies (e.g., slightly broadened transmission beams or ECG gating) but at the cost of the resolution and potential stitching artifacts [3].

Although frame rates of around several tens of images per second are sufficient for real-time observation of cardiac morphology, the understanding of complex cardiac dynamics requires a significant increase in temporal resolution. In order to reduce the number of transmissions, methods based on plane wave (PW) insonifications have been proposed. These approaches use PW to insinify the whole medium with one single emission. The backscattered echoes are then measured and postprocessed to reconstruct simultaneously all lines of the image of interest [4]. The concept of broad field-of-view transmit beams with full parallel receive beamforming dates back to the late 90s, when Lu [5], [6] developed a high frame rate imaging method based on limited diffraction beams. This method is based on the reconstruction of the Fourier spectrum of the object function. More recently, the same group proposed to extend this approach to steered PWs (SPWs) in transmission in order to reconstruct ultrasound images with wider field of view [7]. Garcia et al. [8] proposed an f–k migration method for PW imaging based on the exploding reflector model used in exploration seismology. This method also reconstructs the Fourier spectrum of the object function but with observable differences for the high lateral frequency components. One important shared property of the two above-mentioned methods is that the Fourier spectrum of the object is sampled along the k_z-direction with a lateral step proportional to the inverse of the pitch (distance between two consecutive active elements). As an alternative, Bernard et al. [9] recently proposed a technique based on the Fourier slice theorem that samples the Fourier space radially. In a different manner, starting from PW in transmission, Montaldo et al. [10] proposed a more conventional delay-and-sum (DAS) method applied in reception, which allows the reconstruction of the image of interest directly from the space domain.
The use of these methods to reconstruct an ultrasound image from only one transmission comes up with an image quality (defined in terms of resolution and contrast) intrinsically lower than the one obtained with classical multiline focused beamforming. To overcome this limitation, spatial coherent compounding has been used in many studies to improve image quality [6], [8], [10]. Based on the steering of several SPWs, the concept of this technique is to uniformize focusing synthetically in the full image in transmission, as it is done in synthetic transmit aperture [11], but with a higher frame rate and/or a higher contrast depending on the transmission settings (e.g., the number of firing elements, steering angles, or the number of PWs). Although ultrafast imaging based on coherent compounding using SPW is a recent technique, it has been already applied in many applications, such as transient elastography, pulse wave velocity imaging, flow imaging, shear wave imaging, ultrafast Doppler imaging, and electromechanical wave imaging [10], [12]–[23].

PW compounding techniques become inefficient at large depths and for wide field of views, since the overlap of the steered waves does not cover distant regions homogeneously. In such cases (e.g., in cardiac imaging), a broader wave is needed in emission in order to insonify a larger part of the medium of interest with a single transmit. In this context, Lu and Chen [24] proposed to directly apply their PW reconstruction technique on the received signals generated from the transmission of diverging waves (DWs). However, their method introduces geometrical distortions along the lateral direction. They thus proposed to restrict their method to the emission of DWs with small angles (less than 15°) to reduce these artifacts. Hasegawa and Kanai [25] proposed to use DW compounding in transmission and parallel beamforming in reception to perform high frame rate imaging in 2-D echocardiography. In particular, they proposed to use several diverging beams with different directions to cover the entire medium. Contrary to this approach, Papadacci et al. [26] proposed to use several DWs that individually insonify the entire field of view along with a compound strategy in order to improve the image quality. Recently, Poree et al. [27] developed an original coherent compounding approach with Doppler-based motion compensation to generate high-quality cardiac images by DW imaging.

The above-mentioned ultrafast imaging methods can be classified into two groups: the Fourier-based techniques where the received raw data are used to reconstruct the Fourier spectrum of the object of interest [5], [8], [9] and the spatial-based approaches where the images are directly computed from the space domain [10], [25], [26]. The main advantage of the Fourier-based approaches concerns the computational complexity, this aspect having been investigated in several studies in the context of planar acquisition from SPW [8], [28]. In particular, the computational complexity of the DAS method proposed in [10] is equal to $O(n_{x}n_{y}n_{z})$ and decreases to $O(n_{x}n_{y}n_{z} \log(n_{x}n_{y}n_{z}))$ for Fourier-based techniques [8] (n_{x} representing the number of transducer elements and n_{s} the number of samples of the beamformed signal).

Based on these observations, we introduce in this paper an explicit transformation that allows a direct extension of existing Fourier-based techniques derived for planar acquisition to the reconstruction of sectorial images with wide angles (90°). A first trial to validate this approach has been recently investigated in [29] but restricted to the emission of a single DW and the use of one specific Fourier-based technique. In comparison with this existing work, the novelties introduced in this paper are as follows.

1) We derived an explicit spatial transformation that allows the reconstruction of wide-angle images from the compounding scheme in emission.

2) We showed that this new formulation allows a direct extension of two existing Fourier-based methods to sectorial acquisitions using a combination of DWs in transmission.

3) We assessed the validity of the proposed method from both simulations and in vitro experiments. Its feasibility was also investigated in vivo from a human heart.

The remainder of this paper is organized as follows. In Section II, the proposed approach is described. The quality of the reconstructed images is then investigated in Section III. The discussion is provided in Section IV, while concluding remarks are given in Section V.

II. METHODOLOGY

In this section, we propose a formulation that allows a direct extension of the Fourier-based methods of Lu [5] and Bernard et al. [9] to sectorial acquisitions using a combination of DWs in transmission. These two methods are well adapted to the formulation given in the following since the underlying image formation explicitly involves the same transducer for both transmission and reception. Contrary to these approaches, the method of Garcia et al. [8] is based on the exploding reflector model, leading to approximations that are not adapted in this paper.

A. Fourier-Based Techniques for Planar Acquisition

A brief summary of the Fourier-based techniques proposed by Lu [5] and Bernard et al. [9] in the particular case of the transmission of one horizontal PW is given below.

1) Lu’s Method: Lu [5] first proposed a Fourier method for high frame rate imaging with limited diffraction beams (PW being a particular case). From the use of limited diffraction beams with normal incidence in both transmission and reception, she demonstrated that it is possible to reconstruct the Fourier spectrum of the object function from the following equation:

$$k_{z} = k + \sqrt{k^{2} - k_{x}^{2}}$$

(1)

where (k_{x}, k_{z}) corresponds to the wavenumbers of the object function and k is related to the temporal frequency of the raw data by $k = 2\pi f / c$ (c being the speed of sound).

2) Bernard et al.’s Method: More recently, Bernard et al. [9] proposed a new formulation that expresses the problem of ultrasound image formation through the Fourier slice theorem. Starting with a PW with normal incidence in transmission...
and using an SPW in reception with a given angle ζ, they demonstrated that the 1-D Fourier transform of the sum of the received signals corresponds to a radial line with an angle equal to $\zeta/2$ in the 2-D Fourier spectrum of the insonified medium. In this way, using a sequence of varying steered angles in reception, this technique allows from the transmission of one single PW to radially recover the Fourier space of the insonified medium based on the following fundamental relations (see [9, eq.(7)]):

\[
\begin{align*}
 k_x &= k \sin(\zeta) \\
 k_z &= k(1 + \cos(\zeta))
\end{align*}
\]

where k is the same wavenumber as the one introduced in Lu’s [1] theory (1). Although the Fourier sampling scheme is different, it has been shown that Lu [5] and Bernard [9] methods reconstruct close Fourier spectrum, the only difference arising in the sampling density.

B. Extension of Fourier-Based Techniques to Sectorial Imaging

The key idea of this section is to establish an isomorphism in terms of travel time when either a DW or a PW is used in transmission, as illustrated in Fig. 1. Indeed, such a relation would allow the reconstruction of a sectorial image from a DW using the same formalism as the one derived for planar acquisition. Isomorphism between travel times has been first proposed by Garcia et al. [8] to adapt the seismic Stolt’s migration technique to ultrasound PW imaging. Let us define a probe located at $z = 0$, centered at $x = 0$, and where each transducer element E is positioned at $(x_E, 0)$. Getting inspired by the recent works performed on ultrafast imaging for sectorial acquisition [25]–[27], we propose in this paper to use a DW in order to insonify the entire field of view with one transmission. Such a wave is obtained through the excitation of a virtual source located behind the probe and placed at (x_v, z_v), where $x_v \in [-L/2, L/2]$ (L being the width of the probe) and $z_v \leq 0$ is determined by the chosen angular aperture α and the subaperture width D as

\[
z_v = -\frac{D}{2} \tan(\alpha)
\]

The transmit delays Δ_E associated with the virtual source position and computed for each transducer element are then calculated as

\[
\Delta_E = \left(\sqrt{(x_E - x_v)^2 + z_v^2} + z_0\right)/c
\]

where the second term in the brackets is used as an offset to ensure that the smallest transmitted delay is null. In this context, the travel time of a DW to reach a point scatterer positioned at (x_d, z_d) in the medium and to come back to a transducer element placed at $(x_E, 0)$ is given by

\[
\tau_d(x_E) = \left(\sqrt{(x_d - x_v)^2 + (z_d - z_v)^2} + z_0\right) + \sqrt{(x_d - x_E)^2 + z_d^2})/c
\]

In the case of PW with normal incidence, the travel time involved to reach a point scatterer (x_p, z_p) and to come back to the same transducer element $(x_E, 0)$ is given by

\[
\tau_p(x_E) = \left(z_p + \sqrt{(x_p - x_E)^2 + z_p^2}\right)/c
\]

By equating the first-order Taylor approximation of (5) and (6) at $x_E = x_v$, the following relation between (x_d, z_d) and (x_p, z_p) can be derived:

\[
\begin{align*}
 x_p &\approx \frac{(x_d - x_v)\left(\sqrt{(x_d - x_v)^2 + (z_d - z_v)^2} + z_0\right)}{z_d + \sqrt{(x_d - x_v)^2 + z_d^2}} \\
 &+ \frac{(x_d - x_v)\left(\sqrt{(x_d - x_v)^2 + z_d^2}\right)}{z_d + \sqrt{(x_d - x_v)^2 + z_d^2}} + x_v \\
 z_p &\approx \frac{z_d\left(\sqrt{(x_d - x_v)^2 + (z_d - z_v)^2} + z_0 + \sqrt{(x_d - x_v)^2 + z_d^2}\right)}{z_d + \sqrt{(x_d - x_v)^2 + z_d^2}}
\end{align*}
\]

and

\[
\begin{align*}
 x_d &\approx \frac{1}{2z_v}\left(z_p + \sqrt{\left(x_p - x_v\right)^2 + z_p^2}\right)^2 - \frac{1}{2z_v}\left(z_p + \sqrt{\left(x_p - x_v\right)^2 + z_p^2}\right)^2 - z_0 \right)\left(z_p + \sqrt{\left(x_p - x_v\right)^2 + z_p^2}\right)^2 \\
 &+ x_v \\
 z_d &\approx \frac{1}{2z_v}\left(z_p + \sqrt{\left(x_p - x_v\right)^2 + z_p^2}\right)^2 - \frac{1}{2z_v}\left(z_p + \sqrt{\left(x_p - x_v\right)^2 + z_p^2}\right)^2 - z_0 \right)\left(z_p + \sqrt{\left(x_p - x_v\right)^2 + z_p^2}\right)^2
\end{align*}
\]

From (7) and (8), the following algorithm is thus proposed to reconstruct a sectorial image.

1. Transmission of a DW using a standard phased array.
2. From the received echo, the application of a standard Fourier-based technique is derived for PW. From (7), one can see that the output of this step will reconstruct the desired ultrasound image but expressed in the (x_p, z_p) coordinate system.
3. Application of the spatial transformation given through (8), which allows expressing the reconstructed image in the conventional Cartesian space.
Fig. 2. Error map derived from the travel time equivalence between a sectorial acquisition using DW and the equivalent PW imaging after the application of the proposed spatial transformation. The computed error is expressed relatively to the wavelength used in the experiments. The black line on the top of the figure models the transducer location, while the axis origin is located at the center of the probe. The two black curves drawn inside the error map represent the boundary of the region at the edge of the image where the maximum error is higher than $\lambda/8$.

C. Correctness of the Proposed Formulation

It is worth pointing out that (7) and (8) have been obtained for the particular case $x_E = x_0$, meaning that the equivalence between the travel time of equation (5) and (6) is exact only near the region defined by $x = x_0$, where the Taylor approximation remains valid. We thus investigated the error in terms of travel time difference for the special case $x_0 = 0$ when (7) and (8) are used for each point in the medium. More precisely, for each point (x_d, z_d) of the medium, we first computed the set of travel times $\{t_d(i)\}_{i \in \mathbb{N}}$ from the virtual source point $(0, z_0)$ to (x_d, z_d) back to each transducer element i of the probe (N being the number of elements). We then derived the corresponding (x_p, z_p) points and compute the set of travel times $\{t_p(i)\}_{i \in \mathbb{N}}$ from the probe to (x_p, z_p) back to each transducer element i. In the case of a perfect equivalence between the two systems, the set of the pairwise difference $t_d(i) - t_p(i)$ over the probe element should be zero. Fig. 2 shows the corresponding maximum value [i.e., $\max_i (t_d(i) - t_p(i))$] computed for each point of the medium in terms of the wavelength λ. From Fig. 2, one may first observe that there is no difference in terms of travel time at the center of the probe and this error increases at the edge of the image. The maximum error appears in the near field (depth lower than 1 cm) at the edges of the image with a value of around $0.8 \times \lambda$. Fig. 2 also allows the assessment of the potential defocusing effect induced by the proposed formulation. Indeed, each value displayed in Fig. 2 corresponds to the maximum of the error between the two systems computed over the full aperture. Since for each reconstructed point the travel time error for most of the elements is below $\lambda/8$ (which is the commonly accepted value under which errors in travel distances can be neglected), it reveals the marginal effect of defocusing during the beamforming process. A more detailed investigation of this particular aspect is given in the supplementary information. Finally, it is worth pointing out that the negligible effect of defocusing also justifies the correct reconstruction of the point positioning after the spatial transformation. This aspect will be further investigated in Section III-A1.

D. Summary and Practical Implementation

The formulations introduced in Section II-B allow the reconstruction of an image from the transmission of a DW with a virtual source positioned at any (x_v, z_v). Thus, by reproducing the scheme proposed in [26], i.e., emitting several DWs with virtual sources positioned at $z_v = -D/(2 \tan(\alpha))$ and for different x_v values, our formalism can be used to reconstruct wide field of view ultrasound images with an efficient compounding scheme. The implementation of the procedure for sectorial imaging from the two Fourier-based techniques described in Section II-A can thus be summarized as follows.

1) Transmit one or several DWs to insonify the medium. In particular, for a virtual source positioned at (x_v, z_v), the corresponding DW is generated by applying the delays given in (4) for each transducer element.

2) Receive simultaneously on each transducer the backward echoes. This step allows the collection of a 2-D matrix for each DW insonification.

3) Apply one particular Fourier-based reconstruction method designed for PW (i.e., Lu’s [5] or Bernard et al.’s [9] method) on each received 2-D matrix. This step allows the reconstruction of an RF image that is expressed in a space with coordinates (x_p, z_p).

4) Apply the spatial transformation given in (8) to reconstruct the corresponding RF image in the Cartesian space with coordinates (x_d, z_d).

5) If successive DWs are used to perform coherent compounding, repeat steps 3 and 4 for each firing and average all the reconstructed RF images to get the final compounded image.

Note that step 3) implies the interpolation of the collected data on a regular grid in the Fourier domain in order to compute the reconstructed image using a regular 2-D inverse Fourier transform. Such interpolation is an old topic that has been widely studied in the literature [30]–[32]. In particular, as described in detail in [31], the linear interpolation applied in k-space leads to the multiplication of the real image by a squared sinc function. This results in a decrease in the intensity of the current reconstructed image along depth. To reduce this artifact, we applied a depth-varying intensity correction for the Fourier-based techniques. An intensity correction of 0.5 dB/MHz/cm was used.

E. Experiments

The performance of the proposed transformation associated with the Fourier-based techniques proposed by Lu [5] and Bernard [9] was evaluated from both numerical and in vitro phantoms, as well as from in vivo data from a cardiac acquisition.

1) Acquisition Protocol: The same standard phased array probe of 64 elements with a center frequency of 2.5 MHz (100% bandwidth), a 0.32-mm pitch, a 13-mm height,
and a 60-mm elevation focus was used for all the tests. No apodization was used in transmission or reception. The imaging depth was set to 100 mm. For all the tests, the two extended Fourier methods were compared with the current state-of-the-art spatial-based method of Papadacci et al. [26]. Each reconstructed image was obtained from the following protocol.

i) Raw data signals were acquired using DW with different virtual source point positions.

ii) Those signals were processed either following the two Fourier-based methods described above or using the method of Papadacci et al. [26] to obtain the compounded RF image.

iii) The corresponding envelope image was derived through a Hilbert transform and normalized.

iv) The envelope image was then gamma-compressed using $\gamma = 0.3$ as in [8] and finally converted into an 8-b grayscale to get the B-mode image.

2) Transmission Scheme: For comparison purposes and because of its efficiency, we used the same transmission scheme as the one proposed in [26]. Each DW involved in transmission was emitted from a virtual source point with an angular aperture of 90° and a subaperture width composed of 21 elements. For a single transmission, the virtual source was placed at the center of the probe. For three transmissions, the two others sources were placed near the edges of the transducer (i.e., at $x_0 = [-6.7, 0, 6.7]$ mm). For more than three transmissions, the additional virtual sources were uniformly distributed (i.e., at $x_0 = [-6.7, -3.35, 0, 3.35, 6.7]$ mm for five transmissions in our experiments). The number of transmitted DWs varied from 1 to 25, providing a frame rate between 7700 and 308 frames/s.

3) Evaluation Metrics: The image quality was assessed from the lateral resolution and the image contrast metrics. The contrast was measured from the B-mode images using the following classical contrast ratio (CR) [33]:

$$CR = 20 \log_{10} \frac{|\mu_1 - \mu_b|}{\sqrt{\sigma_1^2 + \sigma_b^2}/2}$$ (9)

where μ_1 and μ_b (σ_1^2 and σ_b^2) are the means (variances) of gray levels in the targets and the surrounding background, respectively.

4) Numerical Simulations: The conceptual correctness of the proposed spatial transformation was first investigated from a simple synthetic phantom composed of a discrete set of point scatterers (Fig. 4). The same phantom was also used to evaluate the quality of the reconstructed images through the lateral resolution. The corresponding values were measured as the full-width at half-maximum of the point spread function associated to the points located at 20, 40, 60, and 80 mm in the image. The image contrast was investigated from another phantom composed of a medium with high density of scatterers (20 per resolution cell) with two anechoic cysts of diameter 8 mm lying at 40- and 80-mm depths, respectively. For all the numerical simulations, the corresponding raw data were generated using Field II [34], [35].

5) In Vitro Experiments: The in vitro experiments were performed with a Verasonics research scanner (V-256, Verasonics Inc., Redmond, WA, USA) and a 2.5-MHz phased array transducer (ATL P4-2, 64 elements). The CIRS tissue-mimicking phantom displayed in Fig. 3 was used for the in vitro experiments. The lateral resolution was first investigated from the acquisition centered on the 0.1-mm nylon monofilament targets positioned at 20, 40, 60, and 80 mm. The performance in terms of contrast was then measured from the hyperechoic cyst present at a 40-mm depth.

6) In Vivo Experiments: The in vivo experiments were performed with a Verasonics research scanner (V-1-128, Verasonics Inc., Redmond, WA, USA) and a 2.5-MHz phased array transducer (ATL P4-2, 64 elements). Very recently, Poree et al. [27] have introduced a scheme for coherent compounding of tilted DWs, which has been validated in cardiac imaging. In particular, to deal with high myocardium velocities, they have proposed to use a triangle transmit sequence of DWs combined with tissue Doppler imaging to perform motion compensation (MoCo). In order to assess the ability of our approach to deal with in vivo data, we applied the exact same transmission scheme as the one described in [27] to reconstruct a cardiac sequence with and without MoCo. In particular, we used 32 DWs in transmission (tilted from -25° to $+25^\circ$ with a triangle strategy) for the reconstruction of each frame of the final sequence. The cardiac data from [27] were reanalyzed as follows.

i) Apply the triangle transmit sequence of DWs given in [27].

ii) For each firing, reconstruct a beamformed sectorial image using the extension of Lu’s [5] method.

iii) Apply the MoCo algorithm described in [27] on each of the image obtained in the previous step.

iv) Perform the compounding on the corrected images;

v) Repeat this process for each frame of the sequence.
Fig. 4. Synthetic phantom reconstructed from the extension of the Fourier-based methods of Lu [5] and Bernard et al. [9] as well as the method of Papadacci et al. [26]. The red points correspond to the real position of the scatterers involved in the simulation. (a) Sectorial extension of Bernard et al.’s [9] method using 1 DW. (b) Sectorial extension of Bernard et al.’s [9] method using 15 DWs. (c) Sectorial extension of Lu’s [5] method using 15 DWs. (d) Papadacci et al.’s [26] method using 15 DWs.

III. RESULTS

A. Numerical Simulations

1) Validation of the Proposed Framework: Fig. 4 displays the images reconstructed from the algorithm described in Section II-D associated with the Fourier-based method of Bernard et al. [9] [Fig. 4(a) and (b)] and Lu [5] [Fig. 4(c)] as well as the image reconstructed by the method of Papadacci et al. [26] [Fig. 4(d)]. The red circles correspond to the real position of the scatterers. From Fig. 4, it can be seen that the proposed transformation allows the reconstruction of all the scatterers with the correct position whatever the chosen Fourier-based technique. This illustrates the marginal effect of the error map presented in Section II-C and validates the flexibility of the proposed approach.

2) Lateral Resolution: Fig. 5(a) investigates the influence of the number of DWs on the lateral resolution using the different reconstruction techniques and for the different depths at the middle of the image (azimuth angle of 0°). First, it can be seen that the three methods produce a similar image quality whatever the depth and the number of DWs. In particular, it can be observed that the lateral resolution improves quickly for three DWs and then tends to stabilize to the optimal value, i.e., around 0.8 mm at a 20-mm depth, 1.4 mm at a 40-mm depth, 2.0 mm at a 60-mm depth, and 2.7 mm at an 80-mm depth. It is also important to note that for each depth, the lateral resolution tends to degrade a little bit after the compounding of 3 DWs. This behavior can be explained by the chosen transmission scheme. Indeed, in the particular case of a monochromatic far-field approximation at a focal distance F, the width W
Fig. 5. Numerical phantom—lateral resolution measurements as a function of the number of DWs computed at 20, 40, 60, and 80 mm at the (a) middle of the image (azimuth angle of 0°) and (b) edge of the image (azimuth angle of 40°).

Fig. 6. Approximation of the full-width at half-maximum of the main lobe corresponding to the coherent summation of DWs in the case of a monochromatic far field at a focal distance of 60 mm.

of the main lobe corresponding to a coherent summation of N DWs ($N > 1$) is of the order of (see [26, eq. (4)])

$$W = 2 \frac{\lambda F N - 1}{W_{va} N}$$

(10)

where $\lambda = 2\pi/k$ and W_{va} corresponds to the width of the virtual array, which is considered as fixed in this study. Based on this equation, we display in Fig. 6 the evolution of the approximation of the full-width at half-maximum from the probe settings used in our simulations at a focal distance of 60 mm. From Fig. 6, one can see that the theoretical evolution of this measure is consistent with the lateral resolution measured in simulations.

Fig. 5(b) investigates the influence of the number of DWs on the lateral resolution using the different reconstruction techniques and for different depths at the edge of the image (azimuth angle of 40°). As for the middle case, it can be seen that the three methods produce a similar image quality whatever the depth and the number of involved DWs. It is also interesting to note that the lateral resolution (computed along the azimuth direction for consistency) degrades with the azimuth angle. For instance, at an 80-mm depth, the lateral resolution goes from values around 2.7 mm at the middle of the image to values of around 3.4 mm at the edge. This phenomenon can be explained by the fact that the region where the different DWs contribute to the image pixels is optimal at the middle of the image, leading to a better image resolution. The limited opening angle of the effective aperture may also reinforce this phenomenon. Finally, it can be observed from Fig. 5(a) and (b) that the difference in terms of lateral resolution between Papadacci et al.’s [26] method and the Fourier-based methods varies on average from 0.06 mm (at a 20-mm depth) to 0.10 mm (at an 80-mm depth), which corresponds of a maximum difference lower than $\lambda/6$. Since this difference is much lower than half of the wavelength, this phenomenon may be considered as negligible.

3) Image Contrast: Fig. 7(a) displays the CR values measured for two different depths at the middle of the image (azimuth angle of 0°) for each compounding experiment. The three methods yield very close results, the CR measurements showing the same tendency with an increasing number of DWs and with better CR scores at 40 mm. This can be easily explained by the intrinsic decrease of the transmit ultrasound pressure with depth, which inevitably induces lower contrast. It is also interesting to note that for more than 15 DWs, the image contrast tends to stabilize to the optimal value for all methods, which is consistent with the results provided in [26]. Finally, Fig. 7(b) to (d) displays the images reconstructed with the three different methods using 15 DWs. These results visually illustrate the closeness in terms of image quality and speckle definition of the images reconstructed from the proposed extension of the Fourier-based techniques and the spatial-based method of Papadacci et al. [26].
Fig. 7. Numerical phantom. (a) CR measurements computed at the middle of the image (azimuth angle of 0°) as a function of the number of DWs. B-mode images reconstructed from the (b) proposed extension of Bernard et al.’s [9] method, (c) proposed extension of Lu’s [5] method, and (d) spatial-based method of Papadacci et al. [26] using 15 DWs with coherent compounding.

Fig. 8. Numerical phantom. (a) CR measurements computed at the edge of the image (azimuth angle of 40°) as a function of the number of DWs. (b) B-mode images reconstructed from the proposed extension of Bernard et al.’s [9] method using 15 DWs with coherent compounding.

Fig. 8 displays the CR values measured for two different depths at the edge of the image (azimuth angle of 40°). As for the cysts in the middle, it can be seen that the three methods yield a very similar image quality whatever the depth and the number of involved DWs. It is of importance to note that the image contrast decreases a little bit with the azimuth angle. For instance, at a 40-mm depth, the CR decreases from values around 13 dB at the middle of the image down to values around 10 dB at the edge.

B. In Vitro and In Vivo Experiments

1) Lateral Resolution: Fig. 9 illustrates the impact of DW compounding number on the lateral resolution for the different reconstruction techniques and for the different depths.
One can first see that all the experimental results are consistent with what have been previously observed from simulations, both in terms of tendency and measured values. Indeed, for all the methods, the lateral resolution improved quickly for three DWs and then tended to stabilize to the optimal value, i.e., around 0.8 mm at a 20-mm depth, 1.4 mm at a 40-mm depth, 2.1 mm at a 60-mm depth, and 3.2 mm at an 80-mm depth. Moreover, it is worth pointing out that at each depth, the different methods reached the optimal lateral resolution values for the transmission of 15 DWs, leading to an optimal frame rate of 855 frames/s.

2) Image Contrast: We investigated in Fig. 10 the quality of the reconstructed images in terms of contrast. In particular, Fig. 10(a) displays the CR values measured at a 40-mm depth for each compounding experiment. From the corresponding graph, it can be observed that the three methods yield very close results. The CR measurements involve the same tendency over the increase in the number of DWs. The optimal CR values are reached in all cases after the transmission of 15 DW (frame rate of 855 frames/s), which are in accordance with the simulation results we obtained in Section III-A3. Fig. 10(b) to (d) displays the reconstructed B-mode images obtained using 15 DW with coherent compounding. As in simulations, these results illustrate visually the closeness in terms of image quality and speckle definition of the images produced by different methods. It is also interesting to note that the decrease in the intensity observed at the two borders of the image can be explained, on the left side, by the presence of a structure with high reflectivity (due to an unexpected flaw present in the CIRS phantom we used at the interface between the background and the hyperechoic cyst of +3 dB), which produces classical ultrasound shadow, and, on the right side, by the physical limit of the CIRS phantom, which induces the reverberation phenomenon. Finally, the limited opening angle of the transducer elements and the limited opening angle of the effective aperture may be additional causes responsible for the observed decrease in intensity at the edges.

3) In Vivo Experiment: Fig. 11 displays one particular frame of the full sequence we reconstructed from a real acquisition performed on a healthy volunteer with and without MoCo, as described in Section II-E6. The transmission scheme used during the acquisition process allowed us to compute a B-mode sequence of the whole left and right ventricles at high frame rate (250 frames/s). This result demonstrates the feasibility of the proposed formulation in a real setting as well as its flexibility, since we could easily integrate the MoCo framework proposed by Poree et al. [27].

IV. DISCUSSION

A. Fourier-Based Methods of Sectorial Imaging

We proposed in this paper an explicit transformation that allows the extension of existing Fourier-based approaches, initially proposed for planar acquisition, to the reconstruction of sectorial images with wide angle using DW. The proposed formulation was evaluated through the extension of two Fourier-based techniques, i.e., the one proposed by Lu [5], which samples the Fourier space along the \(k_z \) axis direction, and the one proposed by Bernard et al. [9], which samples the Fourier space radially. The results obtained from both simulations and experiments revealed that the two extended Fourier-based approaches reconstruct images with a comparable quality as it is the case for planar acquisition, the introduced spatial transform having no effect on their relative behavior. More importantly, we also demonstrated in this paper that the proposed extended Fourier-based approaches produce competitive results compared with the state-of-the art method proposed by Papadacci et al. [26] both in terms of lateral resolution and image contrast.

Although the proposed transformation has been specifically designed for the transmission scheme described in [26] (i.e., the virtual source point of each DW lies on a horizontal line positioned behind the probe), our approach can also be easily used for other strategies like the steered DWs presented in [25]. In the case of SDW of angle \(\theta \), the second term \(z_{s} \) of (4) has to be simply replaced by \(-\min_{e} ((x_{e} - x_{o})^{2} + z_{e}^{2})^{1/2}\) to ensure that the smallest transmit delay is null. The same reasoning then holds to derive the skin spatial transformation. The corresponding equations have been used to produce the results given in Section III-B3.

B. Computational Complexity

One strong interest of Fourier-based techniques for sectorial acquisition is a potential reduction in the computational complexity compared with the conventional DAS method. To determine the computational complexity of the proposed extension of Lu [5] and Bernard et al. [9] methods, let \(n_{e} \) denote the number of elements that compose the transducer (in general, 64, 128, or 192), \(n_{s} \) the number of time samples (typically in the range 1000–3000), and \(n_{p} \) the number of samples
along the x-axis for the reconstructed image (typically between 100 and 500), and n_ξ the number of angles over the two used in reception for Bernard et al.’s [9] method (the ratio of 2 being explained by the use of half of the spectrum). This value was fixed to 85 in our experiments; the reader is referred to [9] for more details.
1) Complexity of Papadacci et al.’s Method: The DAS method proposed by Papadacci et al. [26] must retrieve \(\lambda (n_x, n_y, n_z) \) interpolated data and perform \(\lambda (n_x, n_y) \) summations over \(n_x \), \(\lambda \) being the ratio between the scanned sectorial area and the corresponding encompassing rectangle (with dimensions \(n_x, n_y \)). For an angular aperture of 90°, \(\lambda \) is defined between [0.5, 1]. The computational complexity of the method of Papadacci et al. [26] thus corresponds to \(O(n_x n_y n_z) \).

2) Complexity of the Proposed Extension of Lu’s Method: The sectorial extension of Lu’s [5] method requires two 2-D FFTs (complexity of \(O(n_x n_y \log(n_x n_y)) \)) and two times the computation of \((n_x, n_y) \) interpolated values (one for the regriding step performed in the Fourier space and one for the spatial transformation introduced in this paper). The computational complexity of the extension of Lu’s [5] method thus reduces to \(O(n_x n_y \log(n_x n_y)) \) compared with that of the method of Papadacci et al. [26].

3) Complexity of the Proposed Extension of Bernard et al.’s Method: The sectorial extension of Bernard et al.’s [9] method requires \(n_x \) 1-D FFTs (complexity of \(O(n_x n_y \log(n_y)) \)), one 2-D FFT (complexity of \(O(n_y n_z \log(n_y n_z)) \)), the computation of \((n_x, n_y, n_z) \) multiplications for the delays applied in reception, and two times the computation of \((n_x, n_y) \) interpolated values (one for the regriding step performed in the Fourier space and one for the spatial transformation introduced in this paper). The computational complexity of the extension of Bernard et al.’s [9] method thus corresponds to \(O(n_x n_y n_z) \), making the extension of this method less attractive than the extension of Lu’s [5] method.

C. Extension to Temporal Acquisitions With Tissue Motion

Tissue motion is an important source of artifact in ultrafast imaging. In particular, when the motion of the structures of interest between two consecutive firings is higher than \(\lambda / 8 \), it is common to observe weakening of the compounding effect if no particular strategy is applied. Several approaches have thus been proposed to tackle this problem, on both DW [27] and PW [36]. In this paper, we showed the feasibility of the application of the MoCo algorithm developed in [27] on the images reconstructed from the proposed approach. This shows the accuracy of our technique and further validates the marginal effect of the error map presented in Section II-C.

D. Perspectives

One potential strong interest of the Fourier-based method compared with the DAS technique concerns its lower computational complexity. In the particular case of sectorial reconstruction, we have shown that the computational ratio between the sectorial extension of Lu’s [5] method and the standard DAS technique is of the order \(n_x / \log(n_x n_y) \). Although the proposed transformation has been derived for 2-D, it can be easily extended to 3-D. To this end, one has to take into account the \(y \)-coordinate in the travel time equations of the DW (5) and the PW (6). By equating the first-order Taylor approximation at \(x_F = x_0 \) and \(y_E = y_0 \), one can obtain the corresponding spatial transformation between \((x_F, y_F, z_F)\) and \((x_D, y_D, z_D)\). Interestingly, in the 3-D case, the computational ratio between the proposed method and the DAS technique goes up to \(n_x n_y n_z / \log(n_x n_y n_z) \), making the interest of our approach even more stronger.

V. Conclusion

In this paper, an explicit transformation for the extension of Fourier-based techniques to the reconstruction of sectorial images using DW has been presented. The key concept of the proposed formulation is based on the derivation of an isomorphism in terms of travel time between a planar system based on PW and a sectorial one based on DW. In particular, we proposed an explicit spatial transformation, which allows the reconstruction of wide-angle images from the compounding scheme in transmission, the optimal quality of images being reached for 15 DWs (frame rate of 855 frames/s) on both numerical and in vitro phantoms. The results obtained from the simulations and experiments revealed that the proposed extension of Lu’s [5] method produces competitive results with lower computational complexity compared with the conventional DAS technique.

ACKNOWLEDGMENT

The authors would like to thank the FEDER program, Saint-Etienne Metropole, and Conseil General de la Loire (CG42) for cofounding the RF Verasonics generator within the framework of the SonoCardioProtection Project led by Prof. P. Crosiille.

REFERENCES

Miaomiao Zhang was born in Hebei, China, in 1989. She received the M.S. degree in engineering from Northwestern Polytechnical University, Xi’an, China, in 2013, and the M.S. degree from the Institut National des Sciences Appliquées, Lyon, France, in 2013, where she is currently pursuing the Ph.D. degree with the CREATIS Laboratory.

Her current research interests include ultrafast ultrasound cardiac imaging.

François Varraz was born in Montpellier, France, in 1985. He received the Engineering Diploma and the master’s degree in image and signal processing from the École des Mines de Saint-Étienne, Saint-Étienne, France, in 2008, and the Ph.D. degree from University Lyon 1, Lyon, France, and the University of Florence, Florence, Italy, with a focus on nonlinear ultrasound simulation in 2010.

His Ph.D. research was realized in co-agreement between the Centre de Recherche en Acquisition et Traitement de l’Image pour la Santé (CREATIS), Lyon, France, and the MSD Laboratory, Florence, Italy. Since 2013, he has been an Associate Professor with CREATIS. His current research interests include the nonlinear ultrasound propagation simulation, nonlinear image simulation, multiresolution motion estimation, cardiac imaging, and photoacoustic imaging.

Adrien Besson was born in Grenoble, France, in 1989. He received the Engineering Diploma from Supélec, Paris, France, and the École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, in 2012, where he is currently pursuing the Ph.D. degree with the Signal Processing Laboratory, under the supervision of Prof. J.-Ph. Thiran and Prof. Y. Wiaux.

From 2012 to 2015, he was a Research and Development Engineer with Morpho, Safran Group, Paris. His current research interests include applying compressed sensing techniques to ultrasound imaging.

Mr. Besson was a Technical Program Committee Member for EUSIPCO in 2016.

Rafael E. Carrillo (S’07–M’12) received the B.S. (Hons.) and M.S. (Hons.) degrees in electronics engineering from Pontificia Universidad Javeriana, Bogotá, Colombia, in 2003 and 2006, respectively, and the Ph.D. degree in electrical engineering from the University of Delaware, Newark, DE, USA, in 2011.

He was a Lecturer with the Department of Electronics Engineering, Pontificia Universidad Javeriana, from 2003 to 2006, and a Research Assistant with the Department of Electrical and Computer Engineering, University of Delaware, from 2006 to 2011. From 2011 to 2016, he was a Postdoctoral Researcher with the Signal Processing Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. Since 2016, he has been a Research and Development Engineer with the Signal Processing Group, Centre Suisse d’Electrone et de Microtechnique, Neuchâtel, Switzerland. His current research interests include signal and image processing, compressive sensing, inverse problems, and robust, nonlinear, and statistical signal processing.

Dr. Carrillo was the recipient of the “Mejor Trabajo de Grado” Award, given to outstanding master thesis at Pontificia Universidad Javeriana, in 2006, the University of Delaware Graduate Student Fellowship in 2007, and the Signal Processing and Communications Graduate Faculty Award from the University of Delaware in 2010.
Magalie Viallon received the master’s degree in physics and the Ph.D. degree in nuclear physics from University Claude Bernard Lyon 1, Lyon, France, in 1996 and 1999, respectively. During her thesis, she spent six months at the Center for In Vivo Microscopy, Duke University, Durham, NC, USA.

She was a Postdoctoral Fellow with the University of Johannes Gutenberg, Mainz, Germany, where she was involved in MR cardiac and lung perfusion and fast imaging. From 2001 to 2006, she worked for Siemens HealthCare (France) as a clinical scientist and advanced application engineer in cardiac MRI. Since 2006, she has been actively involved in interventional projects (MR-guided thermal ablation, FUS-guided ablation) developed at the hospital of Geneva, where she was Senior MR Chef Physicist, in charge of the scientific coordination of clinical research from five MR scanners from the MR platform of the Radiology Department, Geneva University Hospital, Geneva, Switzerland, including a PET-MR prototype system. Since 2012, she has been a Senior Researcher with the CREATIS Laboratory (UMR CNRS 5220, INSERM U1044, INSA-Lyon, University Claude Bernard Lyon I, the University of Lyon), Lyon. Her current research interests include the development of magnetic resonance imaging methods using multimodal and parametric approaches for translational research in radiology concerning all organs but with a focus on cardiology, cardiac and skeletal muscle, and acute myocardial infarcts.

Damien Garcia received the engineering degree in mechanical engineering from the École Centrale de Marseille, Marseille, France, in 1997, and the Ph.D. degree in biomedical engineering from the University of Montreal, Montréal, QC, Canada, in 2003. From 2006 to 2008, he was a Postdoctoral Fellow with the Department of Echocardiography, Gregorio Marañón Hospital, Madrid, Spain. He is currently an Associate Professor with the Department of Radiology, Radio-Oncology, and Nuclear Medicine, University of Montreal, and an Invited Researcher with CREATIS, Lyon, France. His current research interests include cardiac and cardiovascular ultrasound imaging, mostly in biomechanics, motion estimation, and blood flow imaging. Dr. Garcia is an Associate Editor of the IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL and is on the Technical Program Committee of the IEEE Ultrasounds Symposium.

Jean-Philippe Thiran (S’91–M’98–SM’03) received the Electrical Engineering degree and the Ph.D. degree from the Université Catholique de Louvain, Louvain-la-Neuve, Belgium, in 1993 and 1997, respectively.

He is currently an Associate Professor with the Department of Radiology, University Hospital Center, Lausanne, Switzerland; the University of Lausanne, Lausanne, Switzerland; and the Signal Processing Laboratory, Swiss Federal Institute of Technology, Lausanne, where he is also the Director. He has authored or coauthored one book, nine book chapters, 150 journal papers, and more than 210 peer-reviewed papers published in the proceedings of international conferences. He holds five international patents. His current research interests include image analysis and multimodal signal/image processing, with applications in many domains including medical image analysis, joint audio-video signal/image processing, remote sensing of the Earth, and surveillance.

Prof. Thiran has been a Coeditor-in-Chief of the Signal Processing Journal, an Associate Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING, the General Chairman of the 2008 European Signal Processing Conference, and the Technical Cochair of the 2015 IEEE International Conference on Image Processing in QC, Canada.

Denis Friboulet was born in Bordeaux, France, in 1961. He received the Engineering degree in electrical engineering and the Ph.D. degree in biomedical engineering from the National Institute for Applied Sciences of Lyon (INSA-Lyon), Lyon, France, in 1984 and 1990, respectively.

He is currently a Professor with INSA-Lyon and a member of the CREATIS Laboratory (CNRS 5220, INSERM U1044, INSA-Lyon, University Claude Bernard Lyon I, the University of Lyon), Lyon. His current research interests include signal processing (statistical modeling, compressed sensing) and image processing (level-set-based segmentation, motion estimation and analysis) applied in the field of echocardiographic imaging.

Hervé Liebgott was born in France in 1979. He received the Ph.D. degree from the Institute for Applied Sciences of Lyon, Lyon, France, in 2005. Since 2014, he has been a Junior Member with the French Institut Universitaire de France, Paris, France. Since 2016, he has been a Full Professor with the Department of Electrical Engineering, University Institute of Technology Lyon 1, Lyon, where he has been doing research with CREATIS. His current research interests include image and signal processing applied to medical ultrasound imaging.

Dr. Liebgott has been an Associate Member of the IEEE Bio Imaging and Signal Processing Technical Committee and a member of the IEEE International Ultrasonics Symposium Technical Program Committee since 2014. Since 2015, he has also been an Associate Editor of the IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL.

Olivier Bernard received the M.Sc. degree in electrical engineering and the Ph.D. degree in medical image processing from the Institute for Applied Sciences of Lyon, University of Lyon, Lyon, France, in 2006.

In 2007, he was a Postdoctoral Research Fellow with the Federal Polytechnic Institute of Lausanne, Lausanne, Switzerland, under the supervision of Prof. M. Unser. In 2007, he became an Associate Professor with the University of Lyon and a member of the CREATIS Laboratory (CNRS 5220, INSERM U1044, INSA-Lyon, University of Lyon), Lyon. In 2013, he was an Invited Professor with the Federal Polytechnic Institute of Lausanne under the supervision of Prof. J. P. Thiran. His current research interests include medical image analysis with a particular attention to cardiac imaging. He has a strong interest in image reconstruction, image segmentation, motion analysis, statistical modeling, sampling theories, and machine learning.

Dr. Bernard is a recipient of the special mention (second prize) for the best Ph.D. in France awarded by the IEEE Engineering in Medicine and Biology Society in 2008. He was a member of the Technical Committee of the IEEE International Conference on Image Processing and the IEEE International Symposium on Biomedical Imaging. He is an Associate Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING.