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Phase Unwrapping of Color Doppler
Echocardiography Using Deep Learning

Hang Jung Ling , Olivier Bernard , Nicolas Ducros , and Damien Garcia

Abstract—Color Doppler echocardiography is a
widely used noninvasive imaging modality that provides
real-time information about intracardiac blood flow. In an
apical long-axis view of the left ventricle, color Doppler is
subject to phase wrapping, or aliasing, especially during
cardiac filling and ejection. When setting up quantitative
methods based on color Doppler, it is necessary to
correct this wrapping artifact. We developed an unfolded
primal-dual network (PDNet) to unwrap (dealias) color
Doppler echocardiographic images and compared its
effectiveness against two state-of-the-art segmentation
approaches based on nnU-Net and transformer models.
We trained and evaluated the performance of each method
on an in-house dataset and found that the nnU-Net-based
method provided the best dealiased results, followed
by the primal-dual approach and the transformer-based
technique. Noteworthy, the PDNet, which had significantly
fewer trainable parameters, performed competitively with
respect to the other two methods, demonstrating the
high potential of deep unfolding methods. Our results
suggest that deep learning (DL)-based methods can
effectively remove aliasing artifacts in color Doppler
echocardiographic images, outperforming DeAN,
a state-of-the-art semiautomatic technique. Overall,
our results show that DL-based methods have the
potential to effectively preprocess color Doppler images
for downstream quantitative analysis.

Index Terms— Color Doppler, dealiasing, deep learning (DL), deep unfolding, echocardiography, flow imaging, phase
unwrapping, primal-dual, transformer, U-Net.
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I. INTRODUCTION

COLOR Doppler ultrasound is a widely accepted clinical

imaging modality for noninvasive, real-time analysis

of cardiovascular blood flow. While 2-D color Doppler is

commonly used for qualitative mapping of flow character-

istics, its applications for quantitative analysis are limited.

Common cardiovascular applications of color Doppler include

the detection of valvular diseases [1] and septal defects [2],

or guiding the positioning of the pulsed-wave sample volume

for spectral Doppler [3]. Among methods to make color

Doppler quantitative, vector flow mapping has been intro-

duced for intracardiac flow dynamics. This method allows

the computation of 2-D or 3-D intraventricular velocity vector

maps from color Doppler fields, using a physically constrained

optimization approach [4], [5]. Intracardiac vector flow map-

ping from color Doppler requires two prerequisite steps:

1) delineation of the endocardial inner wall and 2) correction

of wrapped (aliased) Doppler regions.
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Highlights
• Our deep-unfolding-based primal-dual network (PDNet) incorporated the forward operator as prior information and

had only 0.03M parameters.

• Our deep learning (DL) models outperformed a state-of-the-art non-DL approach in phase unwrapping of color
Doppler echocardiography, with nnU-Net being the best candidate, followed by PDNet with 233× fewer parameters.

• Automatic and accurate color Doppler echocardiographic phase unwrapping ensures correct visualization and
enables quantification of intracardiac blood flow.

With respect to the first step, Painchaud et al. [6] recently

introduced a 2-D + time DL architecture to enforce temporal

consistency and smoothness from one frame to the next. The

second step of correction is necessary due to the occurrence of

aliasing, which is an artifact resulting from insufficient slow-

time sampling. This issue arises when the pulse repetition

frequency (PRF) is unable to capture high-axial velocities

effectively. This causes the Doppler velocity to be wrapped to

the opposite side of the Doppler spectrum when its absolute

value exceeds the Nyquist velocity. Experienced clinicians can

easily identify zones of aliasing in most color Doppler images,

where the color-coded velocities shift from red to blue or

vice versa. Aliasing can be removed in Doppler echocardio-

graphy by designing multi-PRF sequences, as described by

Posada et al. [7]. However, this approach requires control of

the ultrasound machine and is primarily suitable for high-

frame-rate echocardiography. When clinical scanners are used,

aliasing must be corrected by postprocessing the color Doppler

fields. While a number of unwrapping algorithms have been

proposed for dealiasing data maps in atmospheric science,

geodesy, and optical interferometry [8], [9], [10], this problem

has received less attention in color Doppler imaging.

Inspired by traditional radar approaches, Muth et al. [11]

developed a segmentation-based method for color Doppler

dealiasing using statistical region merging, called DeAN.

This unsupervised method uses a scalar hyperparameter to

control the segmentation process. An optimal parameter was

determined from a supervised analysis of 50 color Doppler

data. However, it turns out that the DeAN method fails in

difficult cases as shown in [11, Fig. 11], and that supervised

corrections are still necessary in some situations. With the

goal of developing imaging tools that quantify blood flow from

color Doppler, we propose a DL approach to correct the aliased

areas of echocardiographic color Doppler maps. DL has been

proposed for color Doppler dealiasing in vascular flow imaging

by Nahas et al. [12]. Their approach aimed to solve the double

aliasing problem using two U-Nets. The first U-Net detected

the presence of single aliasing while the second U-Net was

trained to identify and segment double-aliased pixels. They

evaluated the performance of their model by training it with

different types of ultrasound information. They found that

the model trained with a combination of Doppler frequency,

power, and bandwidth performed the best for dealiasing with

the femoral bifurcation.

In our work, we focused on Doppler echocardiography.

In contrast to vascular flow imaging, cardiac color flow

imaging can be subject to substantial clutter signals originating

from the myocardium and tending to spread the aliased pat-

terns. With the goal of proposing a robust DL method that

correctly handles aliasing in most situations, we developed

and compared several architectures. Our main contributions

are as follows.

1) We designed a PDNet based on the idea of deep

unfolding, and compared it with state-of-the-art DL

segmentation methods and DeAN.

2) We used a private color Doppler echocardiographic

dataset acquired in apical three-chamber view

(45 patients, 1338 aliased, and 2379 nonaliased

frames) to train the neural networks and analyze their

performance.

We investigated the value of adding Doppler power as

input information to improve dealiasing.

We introduced a data augmentation strategy that gener-

ates synthetic aliasing, which solved the class imbalance

problem and improved dealiasing performance on diffi-

cult color Doppler images.

II. METHODOLOGY

Aliasing artifacts occur when axial blood speeds (velocity

magnitudes) exceed the Nyquist velocity VN . The acquired

Doppler velocity VD can be written as a function of the

unwrapped or alias-free Doppler velocity Vu as follows:
VD = Vu − 2× nN VN (1)

where nN is an integer called the Nyquist number, which

represents the number of times the signal wraps around the

Nyquist limit. The Nyquist number reads (see [7] for the

demonstration)

nN = floor

(
Vu + VN

2VN

)
. (2)

Except for highly turbulent flows that may occur in

transvalvular or transseptal jets, there is no multiple aliasing

in the adult left ventricle scanned in the apical long-axis view,

i.e., the integer nN belongs to {−1, 0, 1}. Indeed, in adult 129

echocardiography with a 3 MHz phased array, Nyquist veloc-

ities typically range from 0.55 to 0.7 m/s. Thus, single (i.e.,

nN = −1 or 1) or no (i.e., nN = 0) wrapping occurs as long

as the actual blood speed is less than 1.65–2.1 m/s [see (4)].

It follows that double aliasing does not occur in the left

ventricle in most situations without valvular disease or cardiac

shunt. Equations (1) and (2) can be rewritten to express VD

as a wrapped version of Vu

VD = K (Vu) = (Vu + VN ) mod (2VN )− VN (3)
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Fig. 1. Pipeline of the DL-based methods for color Doppler dealiasing.

where mod is the modulo operation. In particular, for nN ∈
{−1, 0, 1}, the wrapping function K becomes

VD = K (Vu) =

⎧⎪⎨
⎪⎩

Vu − 2VN , if VN < Vu < 3 VN

Vu, if − VN ≤ Vu ≤ VN (4)

Vu+ 2VN , if− 3 VN < Vu <−VN .

This representation implies that the dealiasing problem can

be approached in two different ways: 1) a problem that inverts

the wrapping function (3) and recovers Vu from the Doppler

velocities VD by changing absolute jumps greater than VN to

their 2 × VN complement and 2) a multiclass segmentation
approach that assigns a Nyquist number nN (2) to each pixel of

the input image then computes the actual unwrapped velocities

using (1). We investigated three DL models for dealiasing

color Doppler. The first method was derived from the deep

unfolding/unrolling framework and solved the inverse problem

defined in (3) to estimate the actual velocities. We faced a

nonlinear inverse problem on nontrivial data, whose solution

may contain phase jumps at the blood/myocardium interfaces.

Unrolled methods are well suited for solving inverse problems.

Primal-dual optimization, on the other hand, is useful for

nonlinear problems. For these reasons, we tested a learned

primal-dual algorithm inspired by Adler and Öktem [13],
as described in the following section. The other two meth-

ods were state-of-the-art networks that we have adapted for

determining Nyquist numbers in color Doppler images. Fig. 1

shows the pipeline used for all three methods, whose input data

were the Doppler velocity multiplied by the Doppler power

before scan-conversion.

A. OriPDNet: A Primal-Dual-Based Deep Unfolding
Network to Solve Inverse Problems

To solve our nonlinear inverse problem (3), we used

OriPDNet (refer to [13, Fig. 2] for the network architecture),

a deep unfolding network based on a primal-dual optimization

scheme [13]. Given a general inverse problem aiming to obtain

the solution f from the measurement g with the forward

operator K

g = K ( f ) (5)

the outline of OriPDNet to solve this problem is presented in

Algorithm 1.

Algorithm 1 OriPDNet: Original Primal-Dual Network

Initialize f0, h0 = [0, 0, 0, 0, 0] ∈ R
M×N×5

for i = 1, . . . , I do
hi ← �θd

i
(hi−1, K ( f (2)

i−1), g)

fi ← �θ
p

i
( fi−1, [∂K ( f (1)

i−1)]∗ (h(1)
i ))

end for
return f (1)

I

OriPDNet involves several variables and operators, includ-

ing the forward operator K , the adjoint of its Fréchet derivative

[∂K ]∗, the input measured data g, the primal and dual vari-

ables fi and hi , and the learned primal and dual proximal

operators �θ
p

i
and �θd

i
. Convolutional layers are used to

learn these proximal operators. The hyperparameter I , which

determines the number of iterations, requires careful tuning

for each specific problem. The primal and dual variables,

fi and hi , are initialized and then iteratively updated using

the learned primal and dual proximal operators, �θ
p

i
and

�θd
i
. The solution to the inverse problem (5) is obtained

by extracting the first element of the primal variables, f (1)
I .

Adler and Öktem [13] recommended setting the dimension

of the primal and dual spaces to five as the best com-

promise between memory usage and reconstruction quality,

i.e., fi = [ f (1)
i , f (2)

i , f (3)
i , f (4)

i , f (5)
i ] ∈ R

M×N×5 and hi =
[h(1)

i , h(2)
i , h(3)

i , h(4)
i , h(5)

i ] ∈ R
M×N×5, where (M × N ) is the

size of the input data. We conducted preliminary testing and

validated the use of five spaces, in accordance with their

suggestion.

B. PDNet: A Deep Unfolding Network for
Color Doppler Dealiasing

To deal with our specific inverse problem (3) for color

Doppler dealiasing, we adapted OriPDNet. The modified ver-

sion was named as PDNet and summarized in Algorithm 2,

with the main changes highlighted in blue.

Specifically, we defined the forward operator K as a wrap-

ping function given by (3). Despite the discontinuity of this

function at each V = VN ± 2kVN (with k ∈ Z
∗), its derivative

was an identity function, i.e., ∂K (V ) = id. Thus, its adjoint

[∂K (V )]∗ was also an identity function. Unlike the original
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TABLE I
MAIN CONFIGURATIONS OF THE THREE METHODS EVALUATED IN THIS STUDY. Lowest Resolution: SIZE OF THE LOWEST RESOLUTION OF

FEATURE MAPS IN PIXELS. Down. Scheme: DOWNSAMPLING SCHEME. Up. Scheme: UPSAMPLING SCHEME.
Optimization Scheme: OPTIMIZER + INITIAL LEARNING RATE (+ LEARNING RATE SCHEDULER USED).

# Param.: NUMBER OF TRAINABLE PARAMETERS

Algorithm 2 PDNet: Proposed Primal-Dual Network

Initialize V0, h0 = [0, 0, 0, 0, 0] ∈ R
M×N×5

for i = 1, . . . , I do
hi ← �θd (hi−1, K (V (2)

i−1), VD)

Vi ← �θ p (Vi−1, h(1)
i )

end for
return Cθ (V (1)

I )

with Vu = V (1)
I and nN = Cθ (V (1)

I ).

approach (see Algorithm 1), we used the same feature maps for

each iteration of the main loop, which significantly reduced the

number of parameters to learn (30 000 instead of 30 000 × I ,

with I is the number of iterations) while maintaining the same

accuracy. We made this change to avoid training instabilities

that we observed while experimenting with OriPDNet. We also

added a convolutional layer Cθ at the end of the network to

output the Nyquist number from the estimated velocities V (1)
I .

The main reason for this was to avoid noninteger Nyquist

numbers due to the regressed velocities. For a fair comparison

between PDNet and OriPDNet, the same convolution layer Cθ

was also applied to the output of OriPDNet.

C. Segmentation Networks for Color Doppler Dealiasing

nnU-Net is currently one of the best-performing approaches

for medical image segmentation [15]. This model is based

on the U-Net architecture and implements several successful

DL tricks, such as automatic hyperparameter search of the

U-Net architecture to increase accuracy, a patch-wise approach

to preserve image resolution, a deep supervision strategy to

maintain accuracy at all scales, and data augmentation during

both training and inference to enforce generalization. In this

study, we addressed the dealiasing of color Doppler as a

three-class segmentation problem with nnU-Net, where each

class corresponded to a Nyquist number nN ∈ {−1, 0, 1}. Our

network included four stages in the encoder/decoder parts and

had an input size of 192 × 40 pixels, which was the median

image size of our dataset. Table I provides more details about

the architecture and the training scheme (see [15, Fig. C.1] for

an illustration of the nnU-Net architecture).

Recently, transformer-based approaches have been shown

to outperform the nnU-Net model in some medical chal-

lenges [16]. These models attempt to solve the segmentation

problem in a different way, using attention mechanisms with

receptive fields that cover the entire image. Among the

best-performing models, we chose to train the BATFormer

architecture [17] for the color Doppler dealiasing task,

using a segmentation-based technique. This model employs

a multiscale approach based on a U-Net architecture, with

transformer blocks added to the decoder. This strategy results

in an efficient and lightweight architecture (1.2M parameters)

that is suitable for learning from small to medium-sized

datasets. The main configurations of BATFormer are listed in

Table I, and an illustration of its architecture can be found in

[17, Fig. 2].

D. Input Data Strategy

Color Doppler echocardiography produces two types of

information: 1) Doppler velocity, which can be corrupted

by aliasing in regions of high blood speed; and 2) Doppler

power, which provides insight into the regions where veloc-

ity measurements are reliable. Using both Doppler power

and velocity as input to DL models allowed them to learn

how to limit the dealiasing process in regions of interest

and identify ambiguous areas. Therefore, we performed an

ablation study to evaluate the potential improvement pro-

vided by Doppler power. This study was conducted using

the nnU-Net architecture, known for its stability in training

and optimal configurations. Specifically, three nnU-Net models

were trained with three combinations of input data: 1) nnU-Net

1 trained with Doppler velocity only; 2) nnU-Net 2 trained

with the concatenation of Doppler velocity with Doppler

power; and 3) nnU-Net 3 trained with the multiplication

of Doppler velocity by Doppler power. After determining

the best candidate for the input data, we trained the three

models, PDNet, nnU-Net, and BATFormer, using this input

combination to compute the Nyquist numbers nN (2) from

which the unwrapped Doppler velocities Vu (1) were derived.

Our goal was to increment or decrement the Doppler veloc-

ities by 2nN VN , not to modify them by smoothing, for

example.
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Fig. 2. Generation of synthetic images with artificial aliasing artifacts
(right column) from nonaliased images (left column).

E. Artificial Aliasing Augmentation Strategy

Color Doppler images may exhibit aliasing only in local-

ized regions or frames, resulting in datasets that are often

imbalanced, with most pixels belonging to the background

class (i.e., without aliasing). To address this issue, we used

standard data augmentation techniques such as rotation and

flipping, during training. We also proposed an additional data

augmentation technique, which we called artificial aliasing

augmentation, to improve the generalizability of our algo-

rithms. This technique involved identifying regions with high

Doppler velocity and power on alias-free Doppler images and

applying a wrapping function defined by (3) with a lower

Nyquist velocity to create artificial aliasing artifacts, followed

by normalization. The ground-truth references of these artifi-

cially aliased frames were created on the fly by comparing

the Doppler velocities before and after this augmentation.

By creating realistic artificially aliased frames, as shown in

Fig. 2, this strategy enabled us to balance the classes in

training batches. To evaluate the potential benefits of artificial

aliasing augmentation, we conducted an additional ablation

study where we tested the three DL models with and without

this technique during training.

F. DeAN: State-of-the-Art Non DL-Based Dealiasing
Method for CDI

DeAN, mentioned in Section I, is currently one of the most

powerful non-DL-based methods for color Doppler dealiasing.

It is a semisupervised method with a hyperparameter, Q.

To unwrap aliased pixels, DeAN first segments color Doppler

images using a region-merging scheme based on Hoeffding’s

probability inequality. Then, DeAN compares each segmented

region with its nearest neighbors and performs dealiasing if

necessary. This step is based on the assumption that the largest

segment is not aliased and is repeated until all the segments

have been analyzed. The main drawback of this method is the

need to manually search for the optimal Q hyperparameter for

each frame to obtain the best dealiasing results. We compared

the dealiasing performance of DeAN with both the default

Q = 10 and with the manually optimized Q hyperparameter,

against the three DL methods.

G. Evaluation Metrics
All three DL models were designed to output the Nyquist

numbers nN ; the dealiased velocity maps, Vu , were recovered

using (1). To evaluate the accuracy of the dealiased velocity

maps and the Nyquist numbers outputted by each method,

we computed four evaluation metrics.

We compared the dealiased Doppler velocity maps Vu with

the ground-truth alias-free Doppler velocity maps Vref by

computing the cosine similarity index

Cosim(Vu, Vref) = Vu · Vref

‖Vu‖ · ‖Vref‖ . (6)

Cosine similarity is a commonly used similarity measure

for comparing text data or images. We used this similarity

index in our previous work on color Doppler dealiasing [11].

In addition, we computed three classification metrics to verify

whether each pixel was classified correctly on color Doppler

images. The first classification metric was the balanced accu-

racy score, which is more suitable for unbalanced datasets

than the classical accuracy score. It was calculated using the

following formula:

Accuracy = 1

2
×

(
TP

TP+ FN
+ TN

TN+ FP

)
(7)

where TP, FN, TN, and FP refer to true positives, false

negatives, true negatives, and false positives, respectively.

Besides, the classical recall (TP/(TP+ FN)) and precision

(TP/(TP+ FP)) metrics were also computed to evaluate the

overall performance of the methods.

To ensure the reliability and relevance of the results,

we conducted a ninefold cross-validation to compute the scores

presented in each table in Section III-B. For each fold, we split

the dataset into training, validation, and test sets using a ratio

of 36/4/5 patients. This resulted in an average of 2974, 330,

and 413 color Doppler frames for the training, validation, and

test sets, respectively.

III. EXPERIMENT SETUP AND RESULTS

A. Dataset and Training Strategies
1) Color Doppler Dataset: To evaluate the performance of

our methods, we used a color Doppler echocardiographic

dataset of 45 patients that were acquired using a Vivid 7

ultrasound system (GE Healthcare, Chicago, IL, USA) and

a GE 5S cardiac sector probe (bandwidth = 2–5 MHz).

Doppler velocity and power data prior to scan conversion

were extracted into HDF formats using EchoPAC software

(GE Healthcare). The EchoPAC software returned unitless

power data in the range of 1–100. The power data, P , were

compressed by taking the logarithm and then scaled to [0, 1]:

log(P)/2 ← P . The cardiologist used the default settings

(center frequency, pulselength, PRF, packet size, and clutter

filter). These proprietary parameters are masked and could not

be extracted. In most cases, the Nyquist velocity was about

0.6 m/s. Assuming a center frequency of 3 MHz, the PRF
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Fig. 3. Generation of the ground-truth masks from the Doppler velocities. The red, black, and green segmentation masks correspond to Nyquist
numbers nN = 1, 0, and −1, respectively.

was approximately 4500 Hz. These anonymized data came

from a previously published study [18]. The patients were

examined in the echocardiography laboratory under standard

medical conditions. As a result, some patients had significant

heart disease, while others had no visible pathology. The

random selection of patients and their anonymization prevent

us from knowing their demographic and pathological status.

The sequences were acquired in the apical three-chamber view

and included both Doppler velocity and power information.

Each sequence covered at least one complete cardiac cycle,

resulting in a total of 1338 aliased frames and 2379 nonaliased

frames. Since color Doppler has a relatively low frame rate of

10–15 frames/s in clinical echocardiography, we considered

each frame to be independent. To avoid interpolation artifacts,

the data were collected and processed in polar coordinates

(i.e., before scan conversion), but for better visualization, the

results were presented in Cartesian coordinates.

The training, validation, and test data sets, i.e., the pairs

of original and alias-free Doppler velocity maps, were

generated by an experienced analyzer. For this task, the

nonscan-converted clinical Doppler maps were oversegmented

and labeled using a statistical growing region method (see

[11, Fig. 1.B]). The analyst manually identified the aliased

regions, specifically focusing on those related to intraventric-

ular blood flow, which was then corrected by applying ±2VN .

The noisy regions associated with low Doppler power were

left unchanged. Examples of color Doppler frames along with

their reference segmentations are shown in Fig. 3.

2) Training Strategies: To train the DL methods described

in Section II, we performed supervised learning using the

ground-truth segmentations from our in-house dataset. Besides

applying the data augmentation strategies mentioned in

Section II-E, we further addressed the class imbalance of

our dataset by ensuring that each batch contained at least

one aliased image, whether real or synthetic. The BATFormer

model was designed using the official implementation pro-

posed in its GitHub repository.1 This model took color Doppler

images resized to 256 × 256 pixels as input and was trained

for 400 epochs. On the other hand, nnU-Net and PDNet were

implemented using the ASCENT framework.2 For these two

approaches, we used a patch-wise approach to preserve the

1ht.tps://github.com/xianlin7/BATFormer
2ht.tps://github.com/creatis-myriad/ASCENT

resolution of the input data. The models were trained for

1000 epochs to prevent any potential under/overfitting. More

details on the BATFormer, nnU-Net, and PDNet architectures

are shown in Table I.

B. Experimental Results

1) Doppler Power Information was Useful in Dealiasing
Difficult Case: Table II shows the results of the ablation

study aimed at identifying the optimal combination of input

data. The results indicate that the three nnU-Net models

performed similarly across all metrics, implying that incor-

porating Doppler power information in the input data did

not substantially improve the models’ performance. However,

upon evaluation on a challenging test set (right part of

Table II), the model that was trained with the multiplication

of Doppler velocity and Doppler power (nnU-Net 3) demon-

strated better performance for all metrics except precision.

The last two columns of Fig. 4 show two samples taken

from the difficult fold, where the aliased and nonaliased

regions had similar hues. This made the correction of the

aliased velocities difficult. Thus, although not critical, using

the Doppler velocity-Doppler power product as input data is

recommended as it can enhance the models’ generalization

ability, especially for challenging data. For subsequent exper-

iments and results, we trained all DL methods with this input

combination.

2) PDNet Outperformed Its Original Counterpart: We con-

ducted a study to determine the optimal number of iterations

for updating the primal and dual variables in both OriPDNet

and PDNet, given the sensitivity of this type of method to this

parameter. The results are shown in Table III. From this table,

we can see that OriPDNet reached a plateau after ten iterations,

and beyond 20 iterations, it became unstable during training

and failed to produce results. On the other hand, PDNet

exhibited greater training stability and reached a performance

plateau after 20 iterations. Moreover, PDNet achieved better

optimal results than OriPDNet for all metrics except for the

cosine similarity index, where both methods performed equally

well. These results suggest that using the same feature maps

in the primal-dual approach is more suitable for the dealiasing

task and support the use of our deep unfolding network.

In addition, it is worth mentioning that PDNet had only 30 000

parameters, making it the lightest of the three DL models
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TABLE II
DEALIASING BY NNU-NET TRAINED WITH DIFFERENT COMBINATIONS OF INPUT DATA USING NINEFOLD CROSS-VALIDATION. 1, 2, AND 3
CORRESPOND TO THE USE OF DOPPLER VELOCITY ONLY, THE CONCATENATION OF DOPPLER VELOCITY WITH DOPPLER POWER,

AND THE MULTIPLICATION OF THE DOPPLER VELOCITY BY DOPPLER POWER AS INPUT DATA, RESPECTIVELY. THE Difficult Fold
COLUMN SHOWS THE EVALUATION RESULTS OF DIFFERENT NNU-NET MODELS ON A CHALLENGING TEST SET CONTAINING

COLOR DOPPLER FRAMES WITH ALIASED AND NONALIASED REGIONS OF SIMILAR HUE

tested, as detailed in Table I. The significant reduction in

parameters of PDNet as compared with other models was due

to the inclusion of the forward operator as prior information

and the use of the same feature maps per iteration.

3) Artificial Aliasing Augmentation Improved the Performance
of Segmentation-Based Networks: The results presented in

Table IV show that the use of artificial aliasing augmentation

during training had varying effects on the performance of

the different DL models. For nnU-Net, there was a slight

improvement in all metrics except precision. In contrast,

BATFormer showed significant improvement in accuracy,

recall, and precision metrics, with values increasing from

0.88, 0.76, and 0.85 to 0.91, 0.81, and 0.91, respectively.

However, for PDNet, the use of artificial aliasing augmentation

resulted in degraded performance, with accuracy and recall

decreasing from 0.94 and 0.87 to 0.88 and 0.77, respectively.

These results highlight the challenge that the primal-dual-

based regression methods face when generalizing to different

types of aliasing. Based on the findings shown in Tables II–IV,

we determined that the multiplication of Doppler velocity and

power should be used as input for all methods, while artifi-

cial aliasing augmentation should be applied during training

only for the segmentation-based techniques, i.e., nnU-Net and

BATFormer.

4) nnU-Net Gave the Best Dealiasing Results: Table V

shows the final results of our study, where we compare the

three DL methods with their optimal configurations against

the DeAN algorithm. We observe that all three DL methods

outperformed the DeAN algorithm, even the version with the

manually chosen optimal Q hyperparameter. This outcome

confirms the potential of DL methods for color Doppler

dealiasing. Among the DL methods, nnU-Net achieved the

highest scores overall, with a cosine similarity close to 1,

an accuracy of 0.96, a recall of 0.91, and a precision of 0.89.

Therefore, we conclude that nnU-Net is the best DL approach

currently available for dealiasing tasks in echocardiography.

In addition, it is interesting to note that BATFormer showed a

clear improvement when we increased the amount of synthetic

data, indicating that this type of approach requires a larger

dataset to improve its performance for the dealiasing task.

Finally, it is worth noting that PDNet achieved promising

results with 233× fewer parameters compared to nnU-Net,

highlighting the potential of incorporating analytical context

into the DL framework to regularize the solution space.

We also provide a visual inspection of the performance of

the various methods on aliased images with different degrees

of difficulty in Fig. 4. We can see that the DL methods

performed similarly well on the easy and moderate cases (first

two columns), but nnU-Net produced the closest results to the

reference on the more challenging case (third column). This

finding is consistent with the quantitative results presented

in Table V. The last column in Fig. 4 shows an example

where no method was able to handle aliasing correctly. This

example is similar to the one in the first column but with a

more pronounced level of aliasing. In this particular case, the

DeAN method gave the best results. This suggests that it would

be advisable to supplement the training set with challenging

configurations.

IV. DISCUSSIONS

Color Doppler imaging takes high-pass-filtered in-

phase/quadrature (I/Q) data of the same region of interest

acquired along the slow-time axis and differentiates them

pairwise using a lag-1 autocorrelator. The resulting maps

show blood displacements between two consecutive slow-time

samples. By its very nature, color Doppler imaging is an

interferometric technique that enables the measurement of

displacements with a precision that can reach fractions

of the center wavelength. Similarly, synthetic aperture

radar interferometry (InSAR), a remote sensing technique

used to map the Earth’s surface deformations, generates

interferograms that display ground-surface displacements.

Like color Doppler, most interferometric imaging techniques

in fields such as medical imaging, remote sensing, and optical

metrology (e.g., phase-contrast MRI, InSAR, and holographic

interferometry) are subject to aliasing, i.e., jumps that occur

whenever the phase shift equals ±π . Our study aimed to

address the issue of phase jumps. Among the traditional

methods for phase unwrapping, one can mention: 1) graph

cuts [19], [20], which involve representing the wrapped

phase data as a graph and determining the minimum cut

that separates the known and unknown phase values; and
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TABLE III
NINEFOLD CROSS-VALIDATION DEALIASING RESULTS OF PDNET TRAINED WITH DIFFERENT NUMBER OF ITERATIONS (iter.) FOR UPDATING THE

PRIMAL AND DUAL VARIABLES. THE RESULTS ON THE LEFT WERE OBTAINED WITH ORIPDNET, I.E., DIFFERENT FEATURE MAPS PER

ITERATION, WHILE THE RESULTS ON THE RIGHT WERE OBTAINED WITH THE PROPOSED PDNET USING THE SAME

FEATURE MAPS FOR EACH ITERATION

TABLE IV
NINEFOLD CROSS-VALIDATION DEALIASING RESULTS OF THE THREE IMPLEMENTED DL SOLUTIONS TRAINED WITH AND

WITHOUT THE PROPOSED ARTIFICIAL ALIASING AUGMENTATION STRATEGY

TABLE V
NINEFOLD CROSS-VALIDATION FINAL DEALIASING RESULTS OF DL

METHODS WITH THEIR BEST CONFIGURATIONS

AGAINST NON-DL DEAN METHOD

2) least-squares approaches, which minimize the differences

between partial derivatives of the wrapped phase and those

of the unwrapped solution [8], [21]. Specifically, for color

Doppler echocardiography, Muth et al. [11] developed DeAN,

a dealiasing algorithm based on statistical region merging,

which was used in this study for comparative purposes.

Recently, DL techniques have been used to improve tradi-

tional methods in phase unwrapping [12], [22], [23], [24]. Our

goal was to obtain alias-free color Doppler echocardiography

by applying DL to dealias clinical Doppler velocity fields.

DL-based approaches have been introduced for 2-D phase

unwrapping in InSAR [24]. Unlike echocardiographic images,

InSAR interferograms are subject to multiple wraps, making

the networks proposed in our study not suited since we focused

only on single aliasing. On the other hand, InSAR images are

not subject to significant clutter, whereas clutter in Doppler

echocardiography generates substantial noise near moving

tissues, making 2-D phase unwrapping challenging. As a

result, non-DL approaches such as graph cuts or least-squares

methods, which work well for InSAR interferograms, are not

effective for echocardiographic Doppler fields. Although the

DeAN technique largely solved the problem, it still fails in

some situations, as shown in our study. Therefore, we turned

to DL and conducted an in-depth analysis and comparison

of three architectures, including PDNet, which utilizes an

unfolding framework. In addition, we illustrated the potential

benefits of incorporating Doppler power information, since low

power generally indicates poor blood Doppler signal. To better

balance the aliased and nonaliased input data during training,

we resorted to data augmentation by generating synthetic

aliasing.
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Fig. 4. Color Doppler images acquired during: from left to right column, late diastolic filling, systolic ejection, early diastolic filling, and diastole
(a failed case). They were dealiased by DL-based methods and by DeAN with optimized Q hyperparameters. First row: aliased raw color Doppler.
Second row: alias-free GT.

A. Comparison of the DL Methods

Our study found that the three DL methods we tested

(PDNet, nnU-Net, and BATFormer) outperformed the non-

DL DeAN method for color Doppler dealiasing. Notably,

we observed that nnU-Net had the best performance, suggest-

ing that the 2-D U-Net architecture used in nnU-Net may be

particularly well-suited for this task due to its ability to effec-

tively capture spatial features. For example, in a challenging

case where the aliased and nonaliased regions had similar hues

(Fig. 4, third column), nnU-Net was able to unwrap correctly

while other DL methods failed or were less successful. Similar

structures corrected by an expert were part of the training

dataset, which implies that nnU-Net probably learned the flow

patterns and leveraged this knowledge to achieve successful

outcomes. PDNet also performed well, requiring > 200×
fewer parameters than nnU-Net, highlighting the potential

for simpler DL models to achieve competitive results in

color Doppler processing. Further exploration of this type of

unfolding approach, including more complex modeling of the

forward operator, is needed.

Although the third input strategy (velocity-power multipli-

cation) contained less information than the second (velocity-

power concatenation), it performed slightly better in the

difficult fold (last row of Table II). The multiplication strategy

largely suppressed velocity discontinuities in noisy regions,

making the training task easier. In contrast, the concatenation
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of Doppler power and velocity allowed the model to learn the

best strategy for combining these two inputs, which could be

beneficial in larger datasets.

While we did not observe significant performance gains

with BATFormer, the addition of synthetic data improved the

outcomes, indicating that BATFormer also has the potential

for color Doppler dealiasing, especially when more data is

available. Our results demonstrate that DL methods can sig-

nificantly improve upon traditional methods for color Doppler

processing. In addition, they underscore the importance of

further investigating the performance of different DL archi-

tectures for this task and finding ways to effectively exploit

the strengths of each architecture.

B. Limitations and Perspectives
Color Doppler aliasing in the left ventricle mainly occurs

in the mitral jet during early and late filling, as well as

during ejection into the ventricular outflow tract. As shown

in the figures, the aliasing in our study was single. However,

in certain valvular diseases, such as mitral stenosis or aortic

regurgitation, multiple aliasing can occur in the intraventricular

cavity due to the high-fluctuating velocities of the turbulent

jet. The nature of multiple aliasing in this context differs from

that observed in InSAR, requiring specific studies to assess

the feasibility of removing aliasing in areas with significant

local flow perturbations. Although this remains to be verified,

likely, a similar strategy could also work with disturbed flows,

provided that we have access to Doppler data with their alias-

free references. Such ground truths (GTs) could be obtained by

supervised correction, as in this study, and by simulations [25].

Since we used a clinical ultrasound system with a color

Doppler rate of 10–15 frames/s, our study did not exploit

temporal information. In the context of high-frame-rate

echocardiography [26], neural networks with enforced tem-

poral consistency [6] or 3-D U-Net could potentially improve

dealiasing performance by leveraging temporal information.

This approach would be especially relevant as high-frame-

rate color Doppler is subject to more noise related to clutter

signals.

C. Applications in Quantitative Color Doppler
Once corrected, color Doppler images can be used to

visualize and quantify intracardiac blood flow. As mentioned

in Section I, intraventricular vector flow mapping (iVFM) is

an approach to obtain comprehensive flow information, from

which hemodynamic parameters can be estimated. Using a

color M-mode, it is also possible to estimate the pressure

difference between the apex and the mitral base, which reflects

the cardiac filling [27], [28]. However, prior dealiasing is

required for this method [28]. To this end, the approaches out-

lined in this study could be used with color M-mode images.

In a more ambitious perspective, it would be conceivable

to develop neural networks that can directly infer velocity

vector fields or relative pressure fields from color Doppler

images, once properly trained. In this case, the dealiasing

process would be intrinsically integrated into the network.

The main difficulty would lie in obtaining paired input data

that provide the reference values. Simulations combining flows

and acoustics could provide a relevant avenue for this purpose

[25], [29].

V. CONCLUSION

While traditional methods are effective for interferometric

imaging, they are limited for color Doppler echocardiography

due to high noise generated by clutter signals in moving

tissues surrounding the blood flow. We have demonstrated

that DL techniques can achieve alias-free color Doppler

echocardiography. Our proposed DL methods outperformed

the non-DL DeAN method, with nnU-Net achieving the best

performance, followed by PDNet. In addition, the incorpora-

tion of power information and artificial aliasing augmentation

improved the results. The application of DL techniques to

color Doppler echocardiography is a promising approach that

could enhance the clinical utility of this widely used imaging

modality.
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