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Abstract— High-quality ultrafast ultrasound imaging is based
on coherent compounding from multiple transmissions of
plane waves (PW) or diverging waves (DW). However, com-
pounding results in reduced frame rate, as well as destruc-
tive interferences from high-velocity tissue motion if motion
compensation (MoCo) is not considered. While many studies
have recently shown the interest of deep learning for the
reconstruction of high-quality static images from PW or DW,
its ability to achieve such performance while maintaining
the capability of tracking cardiac motion has yet to be as-
sessed. In this paper, we addressed such issue by deploying
a complex-weighted convolutional neural network (CNN) for
image reconstruction and a state-of-the-art speckle tracking
method. The evaluation of this approach was first performed
by designing an adapted simulation framework, which pro-
vides specific reference data, i.e. high quality, motion artifact-
free cardiac images. The obtained results showed that, while
using only three DWs as input, the CNN-based approach
yielded an image quality and a motion accuracy equivalent
to those obtained by compounding 31 DWs free of motion
artifacts. The performance was then further evaluated on non-
simulated, experimental in vitro data, using a spinning disk
phantom. This experiment demonstrated that our approach
yielded high-quality image reconstruction and motion esti-
mation, under a large range of velocities and outperforms a
state-of-the-art MoCo-based approach at high velocities. Our
method was finally assessed on in vivo datasets and showed
consistent improvement in image quality and motion estima-
tion compared to standard compounding. This demonstrates
the feasibility and effectiveness of deep learning reconstruc-
tion for ultrafast speckle-tracking echocardiography.

Index Terms— Echocardiography, ultrafast ultrasound imaging, diverging wave, deep learning, motion estima-
tion, speckle tracking
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I. INTRODUCTION

CONVENTIONAL echocardiography typically reaches 30
to 100 frames/second with a line-by-line ultrasound

system [1], where multiple sectors of the entire field of view
are insonified using sequential narrow beams. Such a frame
rate is sufficient for speckle tracking echocardiography in a
resting adult whose heartbeat is approximately 70 per minute
[2]. However, higher frame rates may be required in some
imaging situations, e.g. i) stress echocardiography [3], ii) all-
four-chamber strain imaging [4], [5], iii) electromechanical
wave imaging [6], and iv) myocardial shear wave imaging
[7], [8].

To achieve higher frame rates, wide beam imaging systems
using plane wave (PW) [9] or diverging wave (DW) [10]
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Highlights

• A novel framework for deep learning-based ultrafast ultrasound cardiac imaging, and evaluation of its temporal coherence for
speckle-tracking echocardiography.

• The proposed approach demonstrates high image quality while preserving consistent speckle pattern for tracking high-speed
tissue motion, when applied on simulated, in-vitro, and in-vivo data.

• This approach has the potential to improve cardiac diagnosis using dynamic analysis at ultra-high frame rates (1500
frames/second in our experiments), owning to its high imaging quality and detectable tissue speed.

have been developed to reconstruct the full field of view in
a single transmit. Such schemes can provide frame rates up
to several thousands of frames/second. Ultrafast imaging can
thus capture short-duration events in cardiac cycles, potentially
improving the accuracy of motion tracking. An increase in
frame rate, however, comes at the expense of a degraded
resolution and contrast compared with conventional focused
imaging. An approach to improve the quality of ultrafast imag-
ing is coherent compounding [11], [12], where consecutive
steered transmit beams at different angles are transmitted and
the backscattered echoes are summed coherently. Coherent
compounding can yield images of high quality, at the expense
of the frame rate compared with single plane-wave/diverging-
wave imaging. In practice, a trade-off must be made between
image quality and frame rate.

In cardiac imaging, which involves fast-moving tissues,
motion artifacts may ensue during a large number of transmit-
receive events for coherent compounding, which in turn de-
grades the quality of compounded images. As a result, inter-
acquisition motion must be considered during the compound-
ing process to mitigate image degradation. Motion compen-
sation (MoCo) methods have thus been introduced to pro-
vide high-quality echocardiography [13], while preserving the
speckle patterns for carrying out efficient speckle tracking
[14]. A typical frame rate of MoCo-based compounding ap-
proaches for high-quality echocardiography in adults is around
250 frames/second, and is still limited by the temporal-spatial
resolution trade-off. Yet, MoCo techniques can be impaired by
the limited quality of the reference frame in registration-based
MoCo [15], or by aliasing due to the Nyquist limit in Doppler-
based MoCo [13]. Exploiting the full potential of ultrafast
cardiac imaging in terms of frame rate and image quality is a
very active area of interest.

Recently, a wide variety of studies based on deep learning
have sought to improve the image quality of high-frame-
rate ultrasound imaging, such as PW imaging [16]–[23], DW
imaging [24]–[26], synthetic transmit aperture imaging [27],
[28], multiline acquisition [29], [30], and multiline trans-
mission [31]. Among these works, the studies in [29]–[31]
were devoted to cardiac imaging. In these studies, the image
quality was typically only evaluated on static cardiac frames
in terms of image contrast, as well as similarity to high-quality
references from single-line acquisitions. However, the interest
of high-frame-rate echocardiography lies in deciphering highly
transient physiological events using cardiac sequences in high
temporal resolution. Deep learning-based methods have yet to
show that it is possible to achieve high imaging quality while
maintaining the capability of tracking blood and tissue motion.

However, very few studies have investigated the properties
of deep learning-based reconstruction for motion estimation.
One notable exception is the study in [21], which performed
such investigation in the context of vascular imaging using
PW imaging. In this work, motion estimation assessment was
performed from numerical simulations. The presented in vivo
results are obtained from one proof-of-concept case acquired
using a low frame rate (10 Hz) and concerned displacements
of slow-moving tissue between the skin and the carotid (i.e.
1.25 mm/s), which are thus far from the much more complex
and fast cardiac motion patterns.

DW transmissions are particularly interesting in echocar-
diography, since they can cover a wide and deep cardiac view
(e.g. a four-chamber view) with a single transmission [5], [14].
However, very few studies [24], [32], [33] are devoted to deep
learning-based processing of DW. We previously described
a deep learning framework for high-quality ultrafast DW
imaging reconstruction [25], [26]. In [26], a complex-values
CNN was exploited for reconstructing high-quality ultrasound
images from DAS beamformed I/Q signals acquired with a
small number (typically three) of DW emissions.

In this paper, we propose a deep learning-based reconstruc-
tion approach for ultrafast cardiac imaging, and showed that it
yielded high imaging quality while achieving a high accuracy
in tracking tissue motion.

The main contributions of this work are the following:
1) We designed a specific numerical simulation pipeline pro-

viding clinical-like ultrasound cardiac sequences, for proper
training of deep learning models and assessing reconstruction
and motion estimation quality. In particular, this simulation
provided task-specific reference data, by allowing imaging the
heart as if it was frozen in time, yielding high-quality, motion
artifact-free images from the compounding of 31 DWs.

2) This simulation framework allowed to demonstrate that
the proposed method reconstructs high-quality cardiac images
using only 3 DWs, yielding an image quality and a motion
accuracy equivalent to those obtained from the reference data,
i.e. from the compounding of 31 motion artifact-free DWs.

3) The CNN trained on the cardiac simulation and the
resulting motion estimation were further evaluated on non-
simulated, experimental in vitro data, using a spinning disk
phantom. This experiment allowed to demonstrate that our
approach yields high-quality image reconstruction and accu-
rate motion estimation under a large range of velocities. In
particular, we showed that the proposed approach outperforms
a state-of-the-art MoCo-based approach at high velocities.

4) The approach was assessed from in vivo cardiac ac-
quisitions and the results showed consistent improvement in
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Conv.+AMU Multi-Conv.+AMU 1×1 Conv.+AMU

Fig. 1. Block diagram of the model architecture

TABLE I
ARCHITECTURE OF THE PROPOSED NETWORK

Feature size Kernel size Kernel number Activation

𝑚 × ℎ × 𝑤 – – –
64 × ℎ × 𝑤 3 × 3 256 4-piece AMU
32 × ℎ × 𝑤 5 × 5 128 4-piece AMU
16 × ℎ × 𝑤 9 × 9 64 4-piece AMU

8 × ℎ × 𝑤

11 × 11 8 4-piece AMU
13 × 13 8 4-piece AMU
15 × 15 8 4-piece AMU
17 × 17 8 4-piece AMU

1 × ℎ × 𝑤 1 × 1 4 4-piece AMU

imaging quality and motion estimation, as compared with
standard compounding, which demonstrated the feasibility and
effectiveness of the proposed approach for ultrafast speckle-
tracking echocardiography.

The remainder of this article is organized as follows. In
Section II, we present our framework for ultrafast DW imag-
ing, data simulation, and speckle tracking. The experimental
configurations for realistic imaging and model training are
presented in Section III. Section IV presents the experimental
results, which are further discussed in Section V. Finally, our
concluding remarks are given in Section VI.

II. METHODS

A. Deep Learning-based DW imaging

We consider a small number of 𝑚 steered DW transmis-
sions, each yielding raw I/Q image 𝝌𝑖 , 𝑖 ∈ [1, 𝑚]. A DAS
beamformer was first applied to produce beamformed I/Q data
𝒙𝑖 = DAS(𝝌𝑖) of size ℎ×𝑤, which represents the dimension of
beamforming grid. The second step consists of reconstructing
a high-quality I/Q image from the set of beamformed data
𝒙 = {𝒙𝒊}. Instead of the standard compounding that requires a
large number of transmits (typically on the order of thirty in
cardiac imaging [13]), we adopted a CNN-based model with
learnable parameters 𝜽 to seek an optimal DW compounding
�̂� = 𝒇𝜽 (𝒙) using supervised learning, with respect to high-
quality targets 𝒚. The references in this study were obtained

from the compounding of a large number of motion artifact-
free DWs. The model was trained by searching for the optimal
convolutional weights �̂� with loss minimization,

�̂� = arg min
D∑︁

(𝒙,𝒚 )
∥ 𝒇𝜽 (𝒙) − 𝒚∥2

2 (1)

where D is a dataset containing representative (𝒙, 𝒚) samples.
In order to consistently process the I/Q data in the complex-
valued domain, we adopted the complex-valued CNN model
proposed in [26], briefly described hereafter. The interested
reader will find in [25] and [26] more details about the
justification and properties of this architecture.

Fig. 1 shows the block diagram of the model architecture
and Table I provides a more detailed specification. As we use
3 DWs as input to the network, the input dimension 𝑚 is
fixed to 3. The model is a fully convolutional network with
five complex-valued convolution layers and amplitude maxout
units (AMUs). We excluded spatial pooling for preserving
the spatial information at the same resolution throughout the
network. Each convolution layer is followed by an AMU acti-
vation, which activates elements corresponding to the element-
wise maximum amplitude across several affine feature maps.

The second-to-last layer consists of the concatenation of
multi-scale convolution kernels. 1 × 1 convolution is used
in the last layer for channel dimension reduction and pro-
ducing reconstructed I/Q images. This layer is equivalent to
cross-channel parametric pooling, which can be trained to
select element-wise the main feature that contributes to the
production of the output element. As demonstrated in [25],
the multi-scale convolution used in conjunction with 1 × 1
convolution and maxout activation allowed position-dependent
features from different receptive fields to be captured, which
helped to address the specific geometry of data sampling for
DW imaging.

B. Cardiac Data Simulation for Deep Learning
Effective learning of the reconstruction model generally

requires the dataset D to be representative of the joint distribu-
tion of input-output space, i.e. paired (𝒙, 𝒚) with a wide variety
of cardiac geometries in the context of echocardiography. It
is however challenging to obtain high-quality target images
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Fig. 2. Framework of cardiac imaging simulation. Based on real
sequences, 3 DW transmissions were simulated with cardiac motion,
and 31 DW transmissions were simulated at the frozen time.

𝒚 with realistic acquisitions, since cardiac motion induces
artifacts when a large number of transmit-receive events are
used for coherent compounding. We therefore propose a sim-
ulation pipeline for generating clinical-like ultrasound cardiac
sequences to tackle this issue. We briefly describe in the
following the specificities of the simulation pipeline yielding
the time-matched pairs (𝒙, 𝒚). The interested readers will find
a more detailed description in [34], [35].

1) Pipeline overview: The overall framework for the numer-
ical simulation is illustrated in Fig. 2. The pipeline starts with
B-mode cardiac sequences from clinical recordings. These real
images were used as the templates for cardiac geometries,
which define the acoustic scatterer maps in the simulated field
of view. Steered DW transmissions in the scatterer medium
were simulated using a homemade open-source software called
SIMUS [36], [37] for the generation of synthetic ultrasound
data. To obtain motion artifact-free reference, each 𝒚 was
generated with steered DWs fired at a single time point (i.e.
with a fixed scatterer map corresponding to the simulated
frame), thus allowing imaging the heart as if it was frozen in
time. On the opposite, 𝒙 was produced in a dynamic manner
for mimicking real acquisitions. The steered DW transmissions
were simulated while taking into account the cardiac motion
between each acquisition. The cardiac motion was simulated
by the scatterer displacement using the strategy described at
the end of this section.

2) Cardiac geometry: A carefully-defined medium of acous-
tic scatterers was exploited for the simulation of cardiac geom-
etry. In order to obtain realistic speckle statistics, we followed
the approach previously described in [34]. For each template
sequence, the scatterers were randomly distributed within the
imaging sector at a density of 10 per square wavelength and
the reflection coefficients RC𝑚 of the scatterers were computed
according to the local intensities 𝐼𝑚 of the B-mode templates

as [34]
RC𝑚 = (𝐼𝑚/255) (1/𝛾) · N (0, 1) (2)

where N(·) is the normal distribution, and 𝛾 is a constant for
gamma compression. As shown in [34], this strategy yields
fully developed speckle for blood regions (i.e. Rayleigh statis-
tics) and partially developed speckle in myocardial regions
(i.e. sub-Rayleigh statistics). The initial myocardium scatterers
were distributed in the manually annotated myocardium region
of the first frame. The scatterer positions for the subsequent
frames were computed using the strategy described in Section
II-B-3. The reflection coefficients of myocardium scatterers
were set constant to maintain the speckle texture throughout
the simulated sequences.

3) Myocardium motion: The simulation pipeline includes the
motion fields in myocardium regions. The myocardium regions
were obtained by manually delineating the endocardial and
epicardial contours on the template frames. The regions of in-
terest (ROIs) were then resampled to obtain time-varying sur-
face meshes throughout the cardiac cycles. The myocardium
motion fields were obtained with the propagation of the mesh
over the full sequence. Such a scheme allows obtaining paired
(𝒙, 𝒚) at any time point throughout the temporal trajectory of
the simulated motion. The motion fields in the simulation were
used as the ground truth for the evaluation of speckle tracking
among consecutive reconstructed frames.

C. Speckle tracking

The tissue interframe motion was estimated on recon-
structed frames using a speckle tracking approach described in
[38]. This approach is based on a block-matching algorithm,
where the normalized cross-correlation (NCC) is computed
via a FFT for efficiency [39]. Let us note that other efficient
approaches for NCC computation are possible [40]. The ap-
proach can be summarized by the following process. The con-
secutive real-envelope images were divided into overlapping
subwindows. The normalized cross-correlation (NCC) corre-
sponding to each subwindow was computed on the subwindow
pairs of two successive frames, and the relative displacement
within each subwindow is given by the location of the peak
in each NCC. A parabolic peak fitting around the NCC peak
was used to obtain the displacement with subpixel accuracy.
To detect a wide range of motions, the process was iteratively
performed in a coarse-to-fine manner by iteratively decreasing
the size of the subwindows to refine the motion fields.

III. EXPERIMENTS

A. Data acquisition

1) Simulated data: We performed the cardiac sequence
simulation using the pipeline described in Section II. The
template sequences were extracted from the CAMUS open-
access dataset [41] composed of exams from 500 patients
acquired in clinical routine from the University Hospital of St-
Etienne (France) within the regulation set by the local ethical
committee of the hospital. A subset of 94 sequences with
apical four-chamber views were selected for the simulation,
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resulting in 4324 frame templates with the corresponding
cardiac texture and myocardial displacement fields.

We simulated steered DW transmissions under the imaging
settings corresponding to an ATL P4-2 probe: a 64-element
phased array of 0.3-mm pitch and 50-𝜇m kerf. The center
frequency was 3 MHz and the bandwidth was 2–4 MHz.
For each template frame, we simulated 31 steered DW trans-
missions with tilt angles evenly spaced between ±20◦. The
scatterer map was set fixed to obtain motion artifact-free
references 𝒚. We then simulated 3 steered DW transmissions
𝒙 while taking into account the cardiac motion between each
transmission. The steering angles were −20◦, 0◦, and 20◦. The
motion was obtained by interpolating the reference motion
field considering the pulse reception frequency (PRF), which
was set to 3850 Hz in the simulation (i.e. Δ𝑡 = 0.26 ms).
Such a PRF allows round-trip ultrasonic transmissions of 20-
cm depth between each acquisition, which is the largest axial
depth of the template sequences. The synthetic RF data were
sampled at 12 MHz, then demodulated and beamformed using
a delay-and-sum (DAS) [42] to produce the beamformed I/Q
data.

2) In vitro data: The in vitro data were acquired using
a research scanner (Vantage 256, Verasonics Inc.) and an
ATL P4-2 probe with the same probe settings used for the
simulation and a PRF of 4500 Hz. Imaging was carried out
on a 10-cm-diameter tissue-mimicking disk phantom with four
anechoic cysts. The disk was mounted on a step motor and
rotated at controlled speeds. The angular velocities ranged
from 0 to 12 radians per second with an increment of one,
giving a maximum speed of 60 cm/s at the disk periphery that
encompasses the myocardial maximum velocity, i.e ∼ 15 cm/s
for normal subjects [43] to ∼ 30 cm/s for endurance athletes
[44]. We performed two separate DW acquisition series for
each rotational speed: the 3-angle sequence and the MoCo-
based one. The MoCo-based sequences used a triangle steering
strategy with 32-angle series and 50% overlap [13]. This
yields a frame rate of 280 frames/second for MoCo and 1500
frames/second for the 3-angle sequence. For each acquisition,
the received raw RF data were sampled and processed with
the same settings used for the simulation.

3) In vivo data: The in vivo study was performed from
five normal subjects and was approved by the Polytechnique
Montréal Comité d’éthique et de la recherche (CER-2122-54-
D). Apical four-chamber views were examined. Two types of
transmission, i.e. 3-angle sequences (used for CNN reconstruc-
tion) and 32-angle triangular sequences (used for MoCo-based
reconstruction), were obtained with the same imaging and pro-
cessing configurations used for the in vitro experiment. During
acquisition, these two transmission types were interleaved, in
order to minimize the time interval between the corresponding
reconstructions and make them comparable. Using a PRF of
4500 Hz and considering a maximum myocardial velocity
of 15 cm/s in normal subjects, this indeed corresponds to a
maximum displacement smaller than 0.07 mm, i.e. less than
𝜆/7 (where 𝜆 denote the wavelength using a central frequency
of 3 MHz and a sound speed of 1540 m/s).

B. Training implementation
From the 94 simulated cases, 56 cases were randomly

selected for training, and 19 cases were used as an indepen-
dent validation set during training, to avoid overfitting. The
remaining 19 cases were used for testing. In the training stage,
the model weights were initialized with the Xavier initializer
[45] and optimized by minimizing the training loss with mini-
batch gradient descent. The batch size was set to 16 and the
Adam [46] optimizer was employed for gradient descent with
back-propagation. The initial learning rate was set to 1×10−4

and an early stopping strategy was used to adjust the learning
rate. The learning rate was halved if the validation loss had not
reduced for 10 epochs and the training ended if there had been
20 epochs without any validation loss reduction. The model
was implemented using Pytorch library on an NVIDIA Tesla
V100 GPU with 32 GB of memory, resulting in training time
of about one day.

C. Comparison Method
For numerical experiments, the results obtained from the

motion artifact-free sequences (i.e. compounding of 31 DWs
simulated at frozen time) were considered as the reference. The
CNN-based results were then compared with this reference
and with the results obtained from standard compounding of
3 simulated DWs (which took into account the cardiac motion
between each transmission.

For in vitro and in vivo experiments, as a motion artifact-
free reference is not available, the results obtained from a
state-of-the-art MoCo-based compounding [13] were used as
a reference. The CNN-based results were then compared with
this reference and with the results obtained from standard
compounding of 3 DWs.

D. Evaluation Metrics
1) Image quality: We evaluated the image quality using peak

signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) in the numerical experiment. These two metrics mea-
sure the image similarity between the reconstructed images �̂�
and the high-quality references 𝒚.

PSNR = 20 log10
MAX(𝒚)√︃
1
𝑛
∥ �̂� − 𝒚∥2

2

(3)

where 𝑛 is the number of pixels in the images.

SSIM =
(2𝜇�̂�𝜇𝒚 + 𝐶1) (2𝜎�̂�𝒚 + 𝐶2)

(𝜇2
�̂� + 𝜇2

𝒚 + 𝐶1) (𝜎2
�̂� + 𝜎2

𝒚 + 𝐶2)
(4)

where 𝜇�̂� and 𝜇𝒚 (𝜎2
�̂� and 𝜎2

𝒚 ) are the means (variances) of
�̂� and 𝒚, respectively, 𝜎�̂�𝒚 is the covariance between �̂� and
𝒚, and 𝐶1 and 𝐶2 are two constants that stabilize the division
with a weak denominator.

For the in vitro experiments, we measured the contrast-
to-noise ratio (CNR) and generalized contrast-to-noise ratio
(gCNR) of the anechoic cysts in the disk phantom.

CNR = 20 log10
|𝜇𝑐 − 𝜇𝑏 |√︃
𝜎2
𝑐 + 𝜎2

𝑏

(5)
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Standard compounding (3 DWs) CNN (3 DWs) Standard compounding
(31 DWs at fixed time)

(a) (c)

(b)

Fig. 3. (a) Typical reconstructions using standard compounding and CNN reconstruction from three DWs, along with the artifact-free reference
reconstruction (from left to right) for 3 examples of cardiac simulations (from top to bottom). The images are displayed with a dynamic of 60 dB. (b)
Average PSNR and (c) SSIM obtained using standard compounding and CNN reconstruction from three DWs for one cardiac cycle. For each time
point, the average was calculated over the entire test set.

where 𝜇𝑐 and 𝜇𝑏 (𝜎2
𝑐 and 𝜎2

𝑏
) are the means (variances) of

the intensities within the cyst and the background regions,
respectively.

The gCNR is defined as the non-overlapping proportion
between the intensity distribution within two regions.

gCNR = 1 −
∑︁
𝑘

𝑚𝑖𝑛{𝑝𝑐 (𝑘), 𝑝𝑏 (𝑘)} (6)

where 𝑘 is the pixel intensity, and 𝑝𝑐 (𝑘) and 𝑝𝑏 (𝑘) are the
probability mass functions of the pixel intensity 𝑘 within the
cyst and background regions.

2) Motion estimation: The accuracy of the estimated inter-
frame motion was evaluated with the endpoint error (EPE),
mean endpoint error (MEPE), and relative angular velocity
error (RAVE). Given an estimated motion vector �̂� and the
true motion vector 𝒎, the EPE is computed as the Euclidean
distance between �̂� and 𝒎,

EPE = ∥�̂� − 𝒎∥2 (7)

For an ROI including 𝑛 measure points, the MEPE is computed
as the average of all EPE values over the set.

MEPE =
1
𝑛

𝑛∑︁
𝑖=1

∥�̂�𝑖 − 𝒎𝑖 ∥2 (8)

The RAVE was specifically used for the in vitro experiment
with the spinning disk.

RAVE =
|�̂� − 𝜔|

𝜔
(9)

where 𝜔 is the true angular velocity controlled by the motor,
�̂� is the estimated angular velocity, which was computed as
the average of angular velocity at each inspected point within
ROI covered by the spinning disk.

IV. RESULTS

A. Numerical Experiment

1) Image quality: Fig. 3(a) displays three examples of recon-
structed cardiac images in the numerical experiments. One can
observe that the CNN improved the contrast and enhanced the
myocardium textures, as compared with the images obtained
from the standard compounding of the same three DWs. In
particular, the images produced by the CNN are visually
close to the reference images, i.e. motion artifact-free images
generated with 31 steered DWs fired at a fixed time.

We show in Fig. 3(b) and 3(c) the average PSNR and SSIM
obtained using standard compounding and CNN reconstruction
from three DWs. The results are given for one cardiac cycle,
by synchronizing the sequences to their end-diastolic (ED) and
end-systolic (ES) frames. For each time point, the average was
calculated over the entire test set. From Fig. 3 (b) and 3 (c),
the time variation of PSNR and SSIM associated with the two
approaches showed a similar tendency: the values increased
from ED to ES frame and then decreased from ES to ED
frame. The CNN reconstruction showed less fluctuation along
the cardiac cycle (average PSNR and SSIM), as compared to
the standard compounding. This is particularly true for the
SSIM results.

Table II reports the average PSNR and SSIM, as well as
their standard deviations on all testing images. The standard
compounding reached 29.28 dB in PSNR and 0.84 in SSIM.
The CNN reconstruction reached 31.44 dB in PSNR and 0.97
in SSIM, which implies that CNN reconstructions are closer
to the references, i.e. motion artifact-free reference images.

2) Motion estimation: Fig. 4(a) shows a typical EPE spatial
distribution obtained for one test case at ED and ES, as
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test case at ED and ES. Bottom row: spatial distribution of the average EPE over the full cardiac cycle mapped on a common circular reference
map for the same case. (b) Average EPE obtained using standard compounding, CNN reconstruction, and the motion artifact-free reference for one
cardiac cycle. For each time point, the average was calculated over the entire test set.

TABLE II
PSNR, SSIM, AND MEPE REACHED BY DIFFERENT APPROACHES ON

THE TESTING DATA.

Model PSNR [dB](↑) SSIM(↑) MEPE [mm](↓)

Standard compounding (3 DWs) 29.28 ± 0.56 0.84 ± 0.05 0.23 ± 0.03
CNN reconstruction (3 DWs) 31.44 ± 0.50 0.97 ± 0.01 0.15 ± 0.02

Standard compounding
– – 0.13 ± 0.01(31 DWs at fixed time)

well as time-average distribution (averaged over one cardiac
cycle). Due to the varying shape of the left ventricle along
the cardiac cycle, the spatial distribution of the averaged EPE
was mapped on a circular reference map. It appears that the
CNN reconstruction leads an EPE distribution close to the
one computed from the reference, and lower than the one
associated with the standard compounding of 3 DWs.

Fig. 4(b) shows the time variation of the MEPE for each
approach. For each time point, the MEPE average was calcu-
lated over the entire test set. One can observe that the three
approaches showed a similar MEPE evolution tendency, while
the CNN yielded a MEPE close to the one associated with the
reference, and lower than the one associated with the standard
compounding of 3 DWs throughout the whole cycle. Table II
gives the MEPE for the three approaches, which were obtained
by averaging the results on all testing data and time. Consistent
with the observation in Fig. 4(b), the CNN reconstruction and
reference reached rather close results, which were 0.15 mm
and 0.13 mm, respectively. The standard compounding of 3
DWs yielded a higher MEPE, i.e. 0.23 mm.

B. In Vitro Experiment

1) Image quality: Fig. 5(a) shows representative frames of
reconstructed disk images in the in vitro experiment. From Fig.
5(a), it appears that the images obtained from the standard
compounding of three DWs suffered from image artifacts,
particularly for higher rotational speeds. Using the same
three DW transmissions, the proposed CNN-based method
restrained these artifacts, yielding a clear disk structure and en-
hanced contrast in the cyst regions. The MoCo-based imaging
approach also reduced image artifacts. As the disk rotational
speed increased, the MoCo-based approach failed to recover
the disk structure in the high-speed regions. The reconstruction
started to exhibit impaired structure on the disk rim at a
rotational speed of 6 rad/s, corresponding to a rim linear speed
of 30 cm/s.

We evaluated the quality of the reconstructed images in
terms of CNR and gCNR, as shown in Fig. 5(b) and 5(c).
The results were measured on the four anechoic cysts of the
disk phantom. As the contrast varies with the position in the
field of view, the investigated images for each approach at
each rotational speed correspond to the frames where the
phantom cysts are in the “cross” position, as shown in Fig.
5(a). With the disk rotational speed below 6 rad/s, the CNN-
based imaging with 3 DWs obtained a CNR of ∼ 7.5 dB
level and a gCNR of ∼ 0.8 level, which was close to MoCo-
based imaging with 32 DWs and higher than those obtained
by the standard compounding of 3 DWs (∼ 4.5 dB in CNR
and ∼ 0.6 in gCNR). With the rotational speed exceeding 6
rad/s, the CNR and gCNR reached by MoCo-based imaging
decreased rapidly and dropped to its minimum of −3.2 dB
in CNR and 0.53 in gCNR. Similarly, the results associated
with the standard compounding decreased with higher disk
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Fig. 5. (a) Reconstructed disk images at different rotational speeds, displayed in B-mode with a dynamic range of 60 dB. (b) CNR and (c) gCNR
reached by different approaches at different disk rotational speeds. The CNR and gCNR were measured on the four anechoic cysts of the disk
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Fig. 6. (a) Motion fields and (b) EPE distribution of estimated motion on reconstructed disk sequences. Left to right: standard compounding of 3
DWs, CNN reconstruction of 3 DWs, and MoCo-based compounding of 32 DWs.

speeds, reaching its minimum of 0.36 dB in CNR and 0.43
in gCNR. The proposed CNN-based imaging yielded stable
results (though slightly decreased) as the rotational speed

increased, and recovered a CNR of 6.6 dB and a gCNR of 0.72
at the highest rotational speed, resulting in a growing lead over
the MoCo-based imaging and standard compounding. These
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Fig. 7. (a) MEPE and (b) RAVE reached by different approaches at
different disk rotational speeds.

results are consistent with the visual observation in Fig. 5(a)
2) Motion estimation: Fig. 6 shows the motion field es-

timated by the speckle tracking and the EPE distribution
of the estimated motion. One can observe that the standard
compounding-based tracking suffered from the motion arti-
facts in the reconstructed images, exhibiting disturbed motion
estimation as the disk rotational speed increased. This is
further demonstrated by the EPE distribution, particularly in
the lateral region where the disk periphery was blurred due to
the motion artifacts. Using the same three DW acquisitions,
the proposed CNN-based approach provided a homogenous
motion field in the ROI and yielded lower EPE for each disk
rotational speed. In the same way, homogenous and accurate
motion fields can be observed in the MoCo-based tracking
with the disk spinning at no higher than 6 rad/s. As the disk
rotational speed increased, the MoCo-based tracking failed
to obtain homogenous motion fields due to the inconsistent
speckle pattern in the impaired structure, yielding higher EPE
in these regions.

Fig. 7 reports the MEPE and RAVE associated with each
approach at each rotational speed. From Fig. 7(a), with the
rotational speed below 6 rad/s, the MoCo-based tracking

returned a MEPE below 0.20 mm, which was lower than
the other approaches. A significantly increased MEPE was
returned by the MoCo-based tracking as the rotational speed
increased, reaching 0.74 mm at the highest rotational speed.
The proposed CNN-based approach led a consistent MEPE
in the range of 0.20 to 0.27 mm, which was lower than
the standard compounding-based tracking (0.28 to 0.47 mm),
regardless of the disk rotational speed. In the same way, the
proposed CNN-based approach returned a consistent RAVE
ranging from 4% to 10% under a large range of rotational
speed, which was lower than the standard compounding-based
tracking (8% to 15%). The MoCo-based tracking led the
lowest RAVE of ∼ 5% with the rotational speed below 6 rad/s,
while reaching up to 68% as the rotational speed increased.

C. In Vivo Experiment
Fig. 8 (a) displays one example of reconstructed in vivo

cardiac images at end-systole (first row) and left ventricular
motion fields during systole (second row) and diastole (third
row). It appears that CNN-based reconstruction improved the
contrast and enhanced anatomical structures as compared to
the standard compounding of the same three DWs, and yielded
an image quality close to the MoCo-based reconstruction.
Furthermore, the motion fields associated with CNN-based
and MoCo-based tracking showed very similar directions and
amplitudes, while standard compounding-based tracking failed
to provide homogenous motion vectors.

For each frame, the image quality and motion estimation
associated to the 3-angle-based imaging (i.e. standard com-
pounding and CNN-based reconstruction) were compared to
the results provided by the 32-angle MoCo-based imaging
(considered as the reference) using SSIM and mean endpoint
difference (MEPD). As opposed to the EPE measure, the
MEPD is only a comparison measure, since the true cardiac
motion is unknown. The equation of the MEPD is thus the
following:

MEPD =
1
𝑛

𝑛∑︁
𝑖=1

∥�̂�CNN
𝑖 − �̂�MoCo

𝑖 ∥2 (10)

where 𝑛 is the number of measure points, �̂�CNN
𝑖 and �̂�MoCo

𝑖

are the motion vectors estimated from the CNN reconstruction
and MoCo reconstruction at measure point 𝑖.

Fig. 8 (b) and (c) show the time variation of the SSIM
and MEPD. For each time point, the results were averaged
over the five in vivo cases in one cardiac cycle. The CNN
leads to a clearly higher SSIM than that associated with
standard compounding, regardless of the time in the cardiac
cycle. Regarding motion estimation, the CNN yields a lower
MEPD (with a maximum of 0.12 mm) and less fluctuation than
standard compounding. Consistently, the difference between
the two approaches narrows considerably in late diastole, when
the cardiac motion is small.

V. DISCUSSION

A. Learning Ultrafast Cardiac Imaging
In this study, we introduced a methodology for learning

ultrafast cardiac imaging. The imaging process was formulated
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Fig. 8. (a) Reconstructed images at end-systole and left ventricular motion fields during systole and diastole for one example of in vivo case (from
top to bottom), obtained from standard compounding and CNN reconstruction using three DWs, along with MoCo-based compounding from 32
DWs (from left to right). (b) Average SSIM and (c) Mean endpoint difference obtained using standard compounding and CNN reconstruction from
three DWs for one cardiac cycle. For each time point, the average was calculated over the five in vivo cases.

as a non-linear mapping between the input space of low-
quality images from ultrafast DW acquisitions to the out-
put space of high-quality cardiac images, which was solved
by supervised learning with respect to high-quality motion
artifact-free references. Considering the dynamic nature of
cardiac imaging, acquiring such reference is challenging, if
not possible, under real conditions. We resolved this chal-
lenge by adopting a carefully-designed simulation pipeline.
Taking advantage of numerical simulations, benchmark images
can be pushed “beyond physics” by simulating optimal DW
insonifications of a static heart medium to eliminate motion
artifacts. Leveraging such a dataset, a complex-valued CNN
underwent learning for seeking an optimal reconstruction
operator, specifically trained to restore high-quality I/Q images
from only three successive DW transmissions.

Visual assessment of the simulated cardiac images (Fig. 3
(a)) and the obtained metrics (Table II) demonstrated that the
proposed approach significantly improved the image quality
compared with standard compounding using the same three
DW transmissions. In vitro and in vivo results (Fig. 5 and 8)
showed consistent performance of the proposed method under
real conditions, though the model was trained solely in the sub-
space of simulated cardiac data. Moreover, equivalent imaging
quality was demonstrated in qualitative and quantitative assess-
ments, as compared with motion artifact-free compounding
in numerical experiments and MoCo-based compounding in
physical experiments, which indicates a good generalization
of the proposed approach under different imaging conditions.

Speckle tracking results in the numerical experiment asso-
ciated with the proposed approach confirm the preservation
of temporal consistency of tissue motion among successive
reconstructed frames, with a MEPE very close to the reference
throughout the cardiac cycle (only an increase of 0.02 mm in

average MEPE over the full cardiac cycle). In vivo cardiac
results confirmed this trend, yielding a maximum mean end-
point difference of 0.12 mm between CNN and MoCo. This
demonstrates that our CNN approach successfully learned an
effective reconstruction operator for the underlying speckle
pattern, toward a motion artifact-free quality.

These results demonstrate the feasibility of applying the
deep learning-based method in ultrafast cardiac imaging, not
only for improving exhibited image quality in separated frames
but also preserving consistent speckle patterns in consecutive
frames, which enables analysis of cardiac dynamics at ultra-
high frame rates.

B. Imaging and Tracking on High-Velocity Tissues
Assessment of cardiac dynamics by speckle tracking re-

quires high-quality imaging with consistent speckle patterns,
which can be challenging when imaging and tracking high-
velocity tissues. Ultrasound imaging with unfocused wave-
fronts can provide ultrahigh frame rates, but suffers from a
low image quality if the transmission number for one frame
is limited. As expected, the limitation was demonstrated with
the in vitro experimental results associated with the standard
compounding of 3 DWs, in terms of both imaging quality and
speckle-tracking accuracy. Fig. 5 illustrates the poor visual
quality of the reconstructed images from this approach. The
quantitative assessment in terms of CNR and gCNR hold for
this visual observation, yielding the lowest results (except for
the CNR in the 11- and 12-rad/s cases which were higher than
the MoCo-based method). Motion artifacts were observed in
high-velocity cases from Fig. 5(a), leading to poorer speckle
tracking in Fig. 6 and increased MEPE in Fig. 7.

As high-quality DW imaging generally relies on coherently
compounding multiple steered transmissions, motion compen-
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sation (MoCo) is required to deal with the inter-acquisition
motion when imaging fast-moving tissues. The implemented
MoCo-based method indeed demonstrated improved imaging
quality in the in vitro experiment, as shown in Fig. 5(a) (0- and
3-rad/s cases), and yielded superior CNR and gCNR results
when the rotational speed was not high. As the disk rotational
speed increased above 6 rad/s, a performance deterioration
in image quality and motion estimation was observed in Fig.
5(a) and 6. Such degradation can be demonstrated by the drop
in CNR and gCNR, as well as the increase in MEPE and
RAVE. The maximum detectable velocity of effective MoCo
is related to its Doppler Nyquist limit, which can be derived by
𝑐 𝑃𝑅𝐹/(8 𝑓0) [13] (with 𝑓0 = carrier frequency). Considering
a speed of sound 𝑐 of 1540 m/s and the imaging settings in
the experiments, the deployed MoCo reached a threshold of
∼ 29 cm/s, which is consistent with the observation in the 6-
rad/s case (corresponding to 30 cm/s at the disk rim). For
lower speed cases, MoCo is fully operational, while the CNN
compensates slightly less for the motion intervening between
each steered DW acquisition.

The interest of the present study was to improve image
quality while preserving the temporal consistency of high-
velocity tissue motion, thereby pushing the limit of detectable
velocity for high-quality ultrasound imaging and accurate
speckle tracking. An important observation from Fig. 5(a) and
6 is that the proposed method provided robust imaging quality
and enabled accurate motion estimation under a large range of
rotational velocities. Fig. 5(b), 5(c), and 7 further demonstrate
steady performance in all evaluation metrics preserved by the
proposed method, particularly at high velocities that exceed the
limit of the MoCo-based imaging. Reliable speckle tracking
was demonstrated in the 12-rad/s case, reaching the maximum
velocity at the boundary with a value of 60 cm/s. Imaging
modalities for higher velocities, such as stress echocardiog-
raphy and blood flow tracking, may thus benefit from such
detectable velocity.

The in vivo experiments aimed at exploring the feasibility
and reliability of the proposed approach for future use in
clinical settings, using a 32 DWs triangular MoCo sequence
as a reference. The results (Fig. 8) were obtained from normal
subjects and indicate that the CNN approach is on par with
the MoCo approach in terms of motion estimation (maximum
mean endpoint difference of 0.12 mm), while offering the
possibility of much higher frame rates (1500 frames/second
when using a PRF of 4500 Hz).

C. Perspectives

The proposed approach provides a feasible solution for
ultrafast speckle-tracking echocardiography, while relying on
two separate steps, i.e. CNN-based image reconstruction from
ultrafast DW transmissions and speckle tracking on recon-
structed sequences. This process may be refined in an end-to-
end manner by adopting multi-task learning for both imaging
reconstruction and motion tracking, as deep learning meth-
ods have also been developed for motion estimation [35],
[47]–[51]. The model accuracy may be further improved by
considering joint optimization for multiple tasks and possible

motion compensation from the estimated motion. Moreover,
as the proposed approach adopts data-driven deep learning,
the training data is also a crucial factor for possible improve-
ment. In the present study, the myocardial motions in the
training data were limited to planar simulations. Integrating
out-of-plane motions in the myocardium simulation may be
interesting, as they generally occur in physical conditions and
may bring additional speckle inconsistency in 2D. It would
also be interesting to incorporate intracardiac flow (as recently
proposed by [52]) in the training data for exploiting analysis
diversity from the proposed ultrafast imaging, since DW-based
echocardiography is well-adapted for simultaneous analysis of
myocardial motion and intracardiac flow.

VI. CONCLUSION

In this article, a methodology for ultrafast cardiac imaging
based on deep learning was presented, particularly imple-
mented in conjunction with speckle tracking for investigating
its temporal property for motion estimation. The method
consists of reconstructing high-quality cardiac images from
ultrafast DW acquisitions by adopting a complex-valued CNN
and supervised learning from a simulated echocardiographic
dataset. We evaluated the performance of the proposed method
in numerical, in vitro, and in vivo experiments, and demon-
strated its effectiveness in both imaging quality enhancement
and speckle pattern restoration for reliable speckle tracking,
under a large range of tissue velocities, while allowing high
frame rates. As such, cardiac diagnosis using dynamic analysis
can benefit from the high imaging quality, frame rate, and
perceptible speed of the proposed approach.
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