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The presence of data gaps is always a concern in geophysical records, creating not only difficulty in
interpretation but, more importantly, also a large source of uncertainty in data analysis. Filling the data
gaps is a necessity for use in statistical modeling. There are numerous approaches for this purpose.
However, particularly challenging are the increasing number of very large spatio-temporal datasets such
as those from Earth observations satellites. Here we introduce an efficient three-dimensional method

based on discrete cosine transforms, which explicitly utilizes information from both time and space to
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accuracy.

predict the missing values. To analyze its performance, the method was applied to a global soil moisture
product derived from satellite images. We also executed a validation by introducing synthetic gaps. It is
shown this method is capable of filling data gaps in the global soil moisture dataset with very high

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of data gaps is a cause for concern in many
geophysical datasets and presents a large source of uncertainty in
data analysis. This is of particular importance when analyzing the
spatio-temporal variability of large datasets, e.g., the large-scale
satellite observations. In the last two decades satellite observa-
tions have demonstrated the potential to become a major tool for
observing the properties of the Earth’s land surface and atmo-
sphere, such as soil moisture, temperature, aerosols and more
recently greenhouse gases. The data gaps in satellite datasets are
intrinsic, primarily due to the satellite orbits. Other specific reasons
such as clouds contamination or instrumental failure etc can also
create data gaps. The rapidly growing volume and diversity of
satellite datasets require an efficient method for filling the data
gaps.

Several methods for this purpose have emerged in recent years
(e.g., Diamantopoulou, 2010), among which the most promising
ones are based on the empirical orthogonal function (EOF) of
spatial variability (Beckers and Rixen, 2003; Alvera-Azcarate et al.,
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2007) or the singular spectrum analysis (SSA) of temporal vari-
ability (Kondrashov and Ghil, 2006; Hocke and Kdmpfer, 2009).
These methods use a few spatial or temporal optimal modes
occurring at low frequencies to predict the missing values. With the
other components discarded as noise, these methods may lead to
reduced accuracy of the statistical models fitted to the existing
values and consequently the predicted missing values from these
models. More importantly, for large spatio-temporal datasets it is
of critical importance to utilize information from both spatial
and temporal variability to predict the missing values. This
demands a method that explicitly takes into account the full
three-dimensionality (2-D spatial + time) of the spatio-temporal
dataset. However, such a method is still not yet reported to date.
Here we introduce a penalized least square method based on
three-dimensional discrete cosine transforms, for the purpose of
filling data gaps in large spatio-temporal datasets. To show its
performance we apply it to a global soil moisture product derived
from satellite images. There are two reasons to choose soil mois-
ture dataset as a primary example. First, soil moisture is one
important climate component, which affects the drought and heat
conditions of lower atmosphere through partitioning of the avail-
able net radiation into latent heat for evaporation and sensible heat
for temperature (Koster et al., 2010; Seneviratne et al., 2010).
Complete soil moisture datasets are nowadays urgently needed,
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both for a number of practical applications, such as agriculture and
weather forecasting (Varella et al, 2010), as also for increased
empirical understanding of the interactions between soil moisture
and atmosphere. Secondly, soil moisture exhibits temporally
a red spectrum (Wang et al,, 2010). This provides a special chal-
lenge to the existing gap filling methods utilizing only optimal
modes at low frequencies (Kondrashov and Ghil, 2006). It is worth
noting that some methods exist that are specifically designed
for filling data gaps in high-resolution in-situ soil moisture time
series as reviewed in Dumedah and Coulibaly (2011); however,
these were not compared to our method, which considers large
spatio-temporal satellite products with coarse resolution.

2. Data and method
2.1. Global soil moisture product

We use the VU University-NASA (VUA-NASA) global volumetric soil moisture
product (m?® m~3) derived from the Advanced Microwave Scanning Radiometer-Earth
Observing System (Owe et al., 2008). This sensor is mounted on NASA’s Aqua satellite
and has daily ascending (13:30 equatorial local crossing time) and descending (01:30)
overpasses. The surface moisture is retrieved with the Land Parameter Retrieval
Model (LPRM) that solves simultaneously for the surface soil moisture and vegetation
optical depth (Owe et al., 2008). The LPRM is based on a microwave radiative transfer
model for passive microwave images that links surface geophysical variables, i.e. soil
moisture, vegetation optimal depth and soil/canopy temperature, to the observed
brightness temperatures. The C-band (6.9 GHz) channel is generally used to retrieve
soil moisture; and the algorithm switches to X-band (10 GHz) when the C-band is
contaminated by Radio frequency interference (RFI) (Njoku et al., 2005). This daily
product has been validated extensively over a large variety of land surfaces of sparse
to moderate vegetations, showing good agreement with in situ observations (De Jeu
et al., 2008; Wagner et al., 2007). It has been shown that the VUA-NASA product
outperforms other AMSR-E soil moisture product over various land cover types
(Draper etal., 2009; Riidiger et al., 2009). We apply the gap filling method to both the
ascending and descending products for the period 2003—2009, which are gridded at
0.50 degree resolution. Here we show only the results from the ascending product.

2.2. Gap filling method

The method to introduce is a penalized least square regression based on
three-dimensional discrete cosine transform (DCT-PLS). The DCT-PLS was origi-
nally proposed for automatic smoothing of multidimensional incomplete data
(Garcia, 2010a,b), and we adapt it here for the purpose of filling data gaps of
spatio-temporal geophysical datasets. The PLS regression is a thin-plate spline
smoother for generally one-dimensional data array, which trades off fidelity to the
data versus roughness of the mean function. Recently, Garcia (2010a) has
demonstrated that the PLS regression can be formulated by the DCT, which
expresses the data in terms of a sum of cosine functions oscillating at different
frequencies. Since the DCT can be multidimensional, thus the DCT-based PLS
regression can be immediately extended to multidimensional datasets. We now
give a brief introduction of the DCT-PLS algorithm, and refer the mathematical
details to Garcia (2010a).

Let X stand for a spatio-temporal dataset with gaps, and W a binary array of the
same size indicating whether or not the values are missing. The DCT-PLS seeks for X
that minimizes

F(E) = [ (8- o] 2

where ||| is the Euclidean norm, V2 and - stand for the Laplace operator and the
Schur (element wise) product, respectively. The s is a positive scalar that controls the
degree of smoothing: as s increases, the smoothness of X also increases. The X can
be easily achieved by rewriting Eq. (1) with the type Il DCT and its inverse (IDCT),
which forms

X = lDCT(FaDCl‘(Wa(X—)A() +)?)) 2)

Here, the T" is a three-dimensional filtering tensor defined by
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where i; denotes the ith element along the jth dimension, and n;j denotes the size of X
along this dimension.

In Egs. (2) and (3), the DCT-PLS modeling relies only on the choice of the
smoothing parameter s. For the purpose of filling data gaps, this parameter needs to
have an infinitesimal value (=0) to reduce the effect of smoothing. A high s value
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Fig. 1. Fraction of data gaps in the ascending AMSR-E product for the period
2003—2009. White areas contain no data at all.

leads to the loss of high frequency components. For a specific s value, the suitability
of the derived DCT-PLS model to the existing values can be evaluated by the
reconstruction error. We define this as the normalized error between original
existing values and their reconstructions:

o= ) fw x| @

Then the model with defined reconstruction error can then be used to predict the
missing values.

3. Results
3.1. Gap filling results

Fig. 1 shows the fraction of data gaps that exist in the soil
moisture product for the study period. The major reasons that
cause data gaps in this dataset include track changes, dense vege-
tation, frozen soil (snow) and waterbodies. As a polar orbiting
satellite, the AQUA satellite gives better coverage over the high
latitudes. However, the data gaps amount to 60—90% over north of
45°N because of frozen soil. The same situation also exists for high
elevation regions like in the Tibetan Plateau. Over regions of trop-
ical rainforest, the vegetation is too dense to retrieve soil moisture.
This product has the best coverage over Europe, with only 10—30%
missing values.

Using the DCT-PLS, the approximation of the derived model to
the existing values is completely controlled by the smoothing
parameter s, which can be any positive value. For the purpose of gap
filling rather than smoothing, we consider here only s values much
smaller than 1. We apply the DCT-PLS to the global soil moisture
product given s values of 100-N with N=0, 1, ... , 6 respectively. The
global average reconstruction errors for each s value are calculated
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Fig. 2. The reconstruction errors averaged over globe for given s values.
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Fig. 3. The data image on Jun. 5, 2003 prior to its model result. Unit: m> m—>.

according to Eq. (4), shown in Fig. 2. Not surprisingly, a larger s
value results in a larger global error. When s =10"% is used, the
global error has already reached a very small value of 5 x 107>, This
small error indicates that the derived DCT-PLS model approximates
very well the existing values of the global soil moisture dataset; and
thus this model can be used to predict the missing values.
Hereafter we demonstrate the gap filling result from the DCT-PLS
with s = 10~%. We note that the data gaps in the entire dataset are

filled by the three-dimensional DCT-PLS simultaneously. The data
image and time series shown below are extracted from respectively
the original and the gap-filled spatio-temporal datasets. Fig. 3 shows
the data image on Jun. 5, 2003 prior to its model result. It appears the
missing values are well filled not only between the satellite over-
passes but also over the tropical rainforest regions where there are
rare observations. In Fig. 4, we show three time series with small to
intermediate fraction of data gaps as well as their corresponding
model outputs. For a clear presentation, only the data series for 2009
are shown. The upper panel shows the time series extracted from
one pixel over Europe (47°N, 2.5°E), with 10% missing values in the
original time series. The middle panel shows those from central US
(35.5°N, 99°W), with 27% data gaps in the original series. The bottom
panel shows those from equatorial Africa (11°N, 0°E), with 43%
missing values in the original time series. In all three cases, the
original values almost completely overlap their reconstructions by
the DCT-PLS model, which is largely due to the small reconstruction
error. It is noticeable that the extreme values existing in the original
dataset are also well captured by the model; those are emphasized
with arrows in Fig. 4. This indicates that the predicted missing values
from the used DCT-PLS model indeed might be reliable; however,
further validation is shown in section 3.2.

With conventional methods, the hardest part is to fill the
continuous gaps. In spatio-temporal dataset the spatially continuous
gaps can be temporally intermittent, or vice versa, such as those
between the satellite overpasses. Owing to the three-dimensionality,
the DCT-PLS method can easily cope with data gaps of this type.
However, special attention needs to be paid to data gaps of large
spatio-temporal size, e.g., those over the tropical rainforest regions
where the vegetation is too dense to retrieve soil moisture. In this
case, the missing values are predicted using the low frequency
components of the dataset. This leads to reduced reliability of
filled-in high frequency components. A large portion of data gaps of
this global soil moisture dataset is due to frozen soil, in which case
the filled-in soil moisture values are physically not realistic.

3.2. Synthetic validation

Sometimes perfect fitting does not necessarily imply good
prediction skill, for example, when overfitting occurs. Thus the
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Fig. 4. Original values (red) prior to their corresponding model reconstructions (blue) for the year 2009 from the pixels over a. Europe (47°N, 2.5°E), b. US (35.5°N, 99°W) and c.
Africa (11°N, 0°E). Note that the original values are almost completely overlapped by the reconstructed values, due to the very small reconstruction errors. Emphasized with arrows

are some extreme values.
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Fig. 5. Pixel-wise Corr (p < 0.05) surface for the synthetic validation over globe.

prediction skill needs to be further validated, for which we use
a generally accepted approach. To validate the prediction skill of the
DCT-PLS method, we introduce synthetic gaps in addition into the
original soil moisture dataset (2003—2009) by randomly removing
10% of the existing values pixel by pixel. This validation strategy is
oriented to the data gaps which are temporally intermittent. In case
of this data intermittency, creating synthetic gaps at random is the
most efficient and realistic as we can not assume any particular
distributions of the data gaps. Then the DCT-PLS gap filling process
is applied to the new dataset with s =1075. In the synthetic gaps,
we calculate the correlation coefficient (Corr) between the original
values and their corresponding DCT-PLS predictions. This is, the
error statistics are only calculated for the data gaps that were
synthetically created. The reconstruction error in the synthetic gaps
can be alternatively used as the skill metric of prediction; however,
it contains no more information than Corr, and we show here only
Corr. The pixel-wise Corr (p < 0.05) is shown in Fig. 5. It appears that
85% of the validated pixels have higher Corr than 0.80, and those
pixels with higher Corr than 0.90 amount to 64%. Specifically, the
Corr values for the representative cases in Fig. 4 are 0.97 (Europe),
0.95 (US) and 0.97 (Africa) respectively. This suggests very good
prediction skill of the DCT-PLS for the filling the data gaps of spatio-
temporal soil moisture dataset.

4. Discussion

In this communication, we introduce an efficient DCT-PLS
method for filling the data gaps in large spatio-temporal dataset.
It is recommended particularly for the rapid growing volume and
diversity of satellite observations in environmental sciences. Using
a global satellite soil moisture dataset as example and as chal-
lenging case, we have demonstrated the very good skill of this
method for gap filling purposes.

This DCT-PLS method has some novel features with respect to
other gap filling methods. It is a method of full three-
dimensionality, and thus explicitly utilizes both spatial and
temporal information of the dataset to derive the statistical model
and predict the missing values. Instinctively, this strategy is pref-
erable for spatio-temporal datasets rather than using only spatial or
temporal modeling. The statistical modeling process is completely
controlled by one smoothing parameter which is easy to specify
and eliminates the need for complicated model parameterizations.
Furthermore, with a small smoothing parameter the DCT-PLS
method has the potential to reliably fill in the high frequency
components.

However, there is no fixed relation between the smoothing
parameter and the gap filling result. In the case where the

geophysical datasets have spatially very large differences in
magnitude, an overfitting might occur with an extremely small
smoothing parameter, leading to poor prediction performance. For
example, for our soil moisture data the minor fluctuations in the
dataset are indeed observed to be exaggerated over some regions,
when a smoothing parameter smaller than 10~ is used. There are
alternative ways to avoid the overfitting problem whether or not
the dataset contains continuous spatio-temporal gaps of large size.
For datasets without such gaps, the best choice is probably to
introduce cross validation for better generalization as Garcia
(2010a) suggested. Yet, this may lead in turn to underfiting and
errorous prediction where data gaps of large spatio-temporal size
exist. In this case we suggest a post-validation by introducing
synthetic gaps to ensure the reliability of the filled in values. The
Matlab code for this method is available from: http://www.
biomecardio.com/matlab/smoothn.html.
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